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Introduction
The purpose of this notebook is to show how rotation of simple solid geometries can be applied. The focus is not to show 

the theory behind rotation, but merely to show how one can apply rotation of general objects when implementing e.g. 

simple rendering algorithms. 

There exists a lot of great material describing the mathematics behind rotations, but when one needs to implement basic 

algorithms that use rotations in an applied context it can be hard to transfer the theory into computer code. My hope is that 

showing howto apply the mathematics involving rotations in Mathematica can help when implementing rotations in 3D 

libraries like OpenGL.

Mathematica supplies a great arsenal of internal functions for working with rotations of geometries in both 2D and 3D. 

Since the primary focus in this notebook is not about how to use Mathematica when solving problems related to rotations, I 

have deliberately decided to use very general functions and datatypes available in most programming languages.

Initially, the math and the terminolgy used throughout the notebook is presented. This content is not presented with a 

particular graphics framework in mind, but should be considered adaptable to most graphics libraries. Finally, the formal-

ism is applied in the context of implementing rotation of the Platonic Solids.  

Notation and Terminology
When reading about rotation in mathematical literature one often finds quite a lot of formalism with respect to terminology 

and notation. In the following the terminology used in this notebook is explained.

Coordinate System

When working with rotations it is very important to understand the orientation of the axes in the coordinate system used. 

Mathematica uses a right-handed coordinate system which is the coordinate system that will be used in this notebook. 

However, there are no convention in graphics about which coordinate system to use, so please consult the documentation 

for the specific library or API for information about the coordinate system used, as this has a number of implications for 

how geometric operations are defined.



Coordinate System

When working with rotations the type of coordinate system used is important. In this notebook a 
right-handed Cartesian coordinate system is used with the origin O located at the intersection of the 
axes X, Y, and Z. 

Given an orthonormal set of basis vectors representing the coordinate axes, there are multiple 
ways to orient the axes. If you take your right hand and point it along the positive x-axis with your 
palm facing the positive y-axis and extend your thumb, your thumb indicates the positive direction 
of the z-axis.

à Right-handed coordinate system

Figure 1 shows a right-handed Cartesian coordinate system and the order of rotation about each axes. Notice that positive 

rotations are performed counterclockwise. Here Φ denotes rotation about the x-axis, Θ denotes rotation about the y-axis, and 

Ψ denotes rotation about the z-axis. The symbols denoting each rotation often depend on the convention -and the topic 

being adressed. More details about the different conventions -and symbols being used when working with 3D rotations, 

will be given later in the notebook.

Figure 1

à Left-handed coordinate system

Figure 2 shows a left-handed Cartesian coordinate system and the order of rotation about each axes. Notice that positive 

rotations are performed clockwise in this coordinate system. Again, Φ denotes rotation about the x-axis, Θ denotes rotation 

about the y-axis, and Ψ denotes rotation about the z-axis. 

Figure 2
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Figure 2

Euler Angles

Generally, Euler angles are used to describe the orientation of a given frame or coordinate system with respect to another 

frame. However, care must be taken when using the term Euler angles, since the literature categorizes Euler angles into 

types in order to distinguish whether the specific rotation is performed around a fixed or moving frame.

Euler angles are a set of three angles used to specify the orientation or change in orientation of an object in three dimen-

sional space. Each of the three angles in a Euler angle triplet specifies an elemental rotation around one of the axes in a 

three-dimensional Cartesian coordinate system as defined above. Unfortunately this is not a complete definition. To 

completely define a Euler angle system, one must choose from a number of conventions.

The following paragraphs will briefly explain the various terminologies and conventions used when speaking of Euler 

angles.

à Elemental Rotation Matrix

Imagine rotating a point P(x, y z) in the sequence:

1) Rotate P(x, y, z) an angle Φ counterclockwise around the x-axis to a new point P'(x', y', z').

2) Rotate P'(x', y', z') an angle Θ counterclockwise around the y-axis to a new point P''(x'', y'', z'').

3) Rotate P''(x'', y'', z'') an angle Ψ counterclockwise around the z-axis to a new point P'''(x''', y''', z''').

It is possible to perform these rotations individually so that when the first rotation is performed the resulting position is 

used when performing the second rotation and so on. Although, doing this can be quite informative, it is hard to describe a 

series of rotations into a single rotation - expressed in one equation. In order to achieve this we need to use rotation 

matrices.

Rotation about the x-axis

Figure 3
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Figure 3

Figure 3 shows how the point P(x, y, z) is rotated about the x-axis into a new position P'(x', y', z') preserving the distance 

from the origo to the point. When rotating the point P(x, y, z) an angle Φ counterclockwise about the x-axis, the x-coordi-

nate remains constant while the y- and z-coordinates are changed. Algebraically, this is expressed in the equations:

(1)x' = x

(2)y' = r cosHv1 + ΦL = r cosHv1L cosHΦL - r sinHv1L sinHΦL = r HcosHv1L cosHΦL - sinHv1L sinHΦLL
(3)z' = r sinHv1 + ΦL = r sinHv1L cosHΦL + r cosHv1L sinHΦL = r HsinHv1L cosHΦL + cosHv1L sinHΦLL

Where v1 is the angle between the y-axis and the point P(x, y, z) in the yz-plane. The following relations holds:

(4)y = r cosHv1L � cosHv1L = -
r

y

(5)z = r sinHv1L � sinHv1L = -
r

z

Inserting expressions (4) and (5) into equations (1), (2), and (3) we get

x' = x

y' = r J-
r

y
cosHΦL - -

r

z sinHΦLN = y cosHΦL - z sinHΦL
z' = r J-

r

z cosHΦL + -
r

y
sinHΦLN = z cosHΦL + y sinHΦL

Arranging the terms gives

(6)x' = x

(7)y' = y cosHΦL - z sinHΦL
(8)z' = y sinHΦL + z cosHΦL

In matrix form

(9)

x'

y'

z'

=

1 0 0

0 cosHΦL -sinHΦL
0 sinHΦL cosHΦL

x

y

z
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Therefore, we can write the position of the new point as

(10)P' = RxHΦL P

Where RxHΦL  is the elemental rotation matrix, rotating the point P an angle Φ counterclockwise around the x-axis. This 

operation is often called Roll.

(11)RxHΦL = RollHΦL =

1 0 0

0 cosHΦL -sinHΦL
0 sinHΦL cosHΦL

Rotation about the y-axis

Figure 4

We repeat the exercise of finding the elemental rotation matrix for rotating about the y-axis. Figure 4 shows how the point 

P(x, y, z) is rotated about the y-axis into a new position P'(x', y', z') preserving the distance from the origo to the point. 

When rotating the point P(x, y, z) an angle Θ counterclockwise about the y-axis, the y-coordinate remains constant while 

the x- and z-coordinates are changed. This can be exptessed by the equations:

(12)x' = r cosHvL
(13)y' = y

(14)z' = r sinHvL
Where the following equation gives the relation between the angles

(15)180 = Θ + v2 + 90 + v � v = 90 - Θ - v2

Using the trigonometry identities for the complementary angle, this can be written as

(16)x' = r cosHvL = r cosH90 - Θ - v2L = r sinHv2 + ΘL
(17)y' = y

(18)z' = r sinHvL = r sinH90 - Θ - v2L = r cosHv2 + ΘL
Using the angle sum identities, we get
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(19)x' = r sinHv2 + ΘL = r sinHv2L cosHΘL + r cosHv2L sinHΘL = r HsinHv2L cosHΘL + cosHv2L sinHΘLL
(20)y' = y

(21)z' = r cosHv2 + ΘL = r cosHv2L cosHΘL - r sinHv2L sinHΘL = r HcosHv2L cosHΘL - sinHv2L sinHΘLL
Where v2 is the angle between the z-axis and the point P(x, y, z) in the xz-plane. The following relations holds:

(22)x = r sinHv2L � sinHv2L = -
r

x

(23)z = r cosHv2L � cosHv2L = -
r

z

Inserting expressions (22) and (23) into equations (19), (20), and (21) we get

x' = r J -
r

x cosHΘL + -
r

z sinHΘLN = x cosHΘL + z sinHΘL
y' = y

z' = r J -
r

z cosHΘL - -
r

x sinHΘLN = z cosHΘL - x sinHΘL
Arranging the terms gives

(24)x' = x cosHΘL + z sinHΘL
(25)y' = y

(26)z' = -x sinHΘL + z cosHΘL
In matrix form

(27)

x'

y'

z'

=

cos HΘL 0 sin HΘL
0 1 0

-sinHΘL 0 cos HΘL
x

y

z

Therefore, we can write the position of the new point as

(28)P' = RyHΘL P

Where RyHΘL is the elemental rotation matrix, rotating the point P an angle Θ counterclockwise around the y-axis. This 

operation is often called Pitch.

(29)RyHΘL = PitchHΘL =

cos HΘL 0 sin HΘL
0 1 0

-sinHΘL 0 cos HΘL
Rotation about the z-axis

Figure 5
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Figure 5

Finally, we can derive the elemental rotation matrix for rotating about the z-axis. Figure 5 shows how the point P(x, y, z) is 

rotated about the z-axis into a new position P'(x', y', z') preserving the distance from the origo to the point. When rotating 

the point P(x, y, z) an angle Ψ counterclockwise about the z-axis, the z-coordinate remains constant while the x- and y-

coordinates are changed. This can be exptessed by the equations:

(30)x' = r sinHvL
(31)y' = r cosHvL
(32)z' = z

Where the following equation gives the relation between the angles

(33)180 = Ψ + v3 + 90 + v � v = 90 - Ψ - v3

Using the trigonometry identities for the complementary angle, this can be written as

(34)x' = r sinHvL = r sinH90 - Ψ - v3L = r cosHv3 + ΨL
(35)y' = r cosHvL = r cosH90 - Ψ - v3L = r sinHv3 + ΨL
(36)z' = z

Using the angle sum identities, we get

(37)x' = r cosHv3 + ΨL = r cosHv3L cosHΨL - r sinHv3L sinHΨL = r HcosHv3L cosHΨL - sinHv3L sinHΨLL
(38)y' = r sinHv3 + ΨL = r sinHv3L cosHΨL + r cosHv3L sinHΨL = r HsinHv3L cosHΨL + cosHv3L sinHΨLL
(39)z' = z

Where v3 is the angle between the x-axis and the point P(x, y, z) in the xy-plane. The following relations holds:

(40)x = r cosHv3L � cosHv3L = -
r

x

(41)y = r sinHv3L � sinHv3L = -
r

y
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Inserting expressions (40) and (41) into equations (37), (38), and (39) we get

x' = r J-
r

x cosHΨL - -
r

y
sinHΨLN = x cosHΨL - y sinHΨL

y' = r J-
r

y
cosHΨL + -

r

x sinHΨLN = y cosHΨL + x sinHΨL
z' = z

Arranging the terms gives

(42)x' = x cosHΨL - y sinHΨL
(43)y' = x sinHΨL + y cosHΨL
(44)z' = z

In matrix form

(45)

x'

y'

z'

=

cos HΨL -sinHΨL 0

sin HΨL cosHΨL 0

0 0 1

x

y

z

Therefore, we can write the position of the new point as

(46)P' = RzHΨL P

Where RzHΨL is the elemental rotation matrix, rotating the point P an angle Ψ counterclockwise around the z-axis. This 

operation is often called Yaw.

(47)RzHΨL = YawHΨL =

cos HΨL -sinHΨL 0

sin HΨL cosHΨL 0

0 0 1

Combined rotation about xyz  (roll-pitch-yaw)

Often we would like to perform a sequence of rotations around different axes. Instead of performing intermediate calcula-

tions, where we store the result of each elemental rotation and use it to perform the next rotation, we can use matrix 

multiplication and derive a transformation matrix which expresses a rotation about an arbitrary sequence of coordinate axes.

Suppose an object is rotated an angle Φ about the x-axis, followed by a rotation an angle Θ about the y-axis, ending with a 

rotation an angle Ψ about the z-axis. The resulting rotation matrix can be determined by multiplication of the elemental 

rotation matrices in the order shown in equation (48).

(48)RxyzHΦ, Θ, ΨL = RxHΦL RyHΘL RzHΨL
(49)RxyzHΦ, Θ, ΨL =

1 0 0

0 cosHΦL -sinHΦL
0 sinHΦL cosHΦL

cos HΘL 0 sin HΘL
0 1 0

-sinHΘL 0 cos HΘL
cos HΨL -sinHΨL 0

sin HΨL cosHΨL 0

0 0 1

The full rotation matrix for the elemental rotation order xyz (roll-pitch-yaw) is given by equation (50).

(50)

RxyzHΦ, Θ, ΨL =

cosHΘL cosHΨL -cosHΦL sinHΨL sinHΘL
cosHΨL sinHΘL sinHΦL + cosHΦL sinHΨL cosHΦL cosHΨL - sinHΘL sinHΦL sinHΨL -cosHΘL sinHΦL

-cosHΦL cosHΨL sinHΘL + sinHΦL sinHΨL cosHΨL sinHΦL + cosHΦL sinHΘL sinHΨL cosHΘL cosHΦL
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Combined rotation about zyx  (yaw-pitch-roll)

Suppose an object is rotated an angle Ψ about the z-axis, followed by a rotation an angle Θ about the y-axis, ending with a 

rotation an angle Φ about the x-axis. The resulting rotation matrix can be determined by multiplication of the elemental 

rotation matrices in the order shown in equation (51).

(51)RzyxHΨ, Θ, Φ L = RzHΨL RyHΘL RxHΦL
(52)RzyxHΨ, Θ, ΦL =

cos HΨL -sinHΨL 0

sin HΨL cosHΨL 0

0 0 1

cos HΘL 0 sin HΘL
0 1 0

-sinHΘL 0 cos HΘL
1 0 0

0 cosHΦL -sinHΦL
0 sinHΦL cosHΦL

The full rotation matrix for the elemental rotation order zyx (yaw-pitch-roll) is given by equation (53).

(53)

RzyxHΨ, Θ, ΦL =

cosHΘL cosHΨL cosHΨL sinHΘL sinHΦL - cosHΦL sinHΨL cosHΦL cosHΨL sinHΘL + sinHΦL sinHΨL
cosHΘL sinHΨL cosHΦL cosHΨL + sinHΘL sinHΦL sinHΨL -cosHΨL sinHΦL + cosHΦL sinHΘL sinHΨL

-sinHΘL cosHΘL sinHΦL cosHΘL cosHΦL
à Proper Euler Angles, Classic Euler Angles, or Fixed Euler Angles

Proper Euler angles, Classic Euler angles, or Fixed Euler angles refer to the same thing. In this notebook we will use the 

term Proper Euler angles. In the Proper Euler angles convention, the three elemental rotations are performed around only 

two axes. For example, the first rotation may be around the z axis, the second around the y axis, and the third around the z 

axis again - resulting in a z-y-z rotation. The Proper Euler angle convention gives a total number of six possible rotations 

about two axes in a Cartesian coordinate system. In all of them, the first and third rotation axes are the same. Each of these 

are given below:

* X-Z-X

* X-Y-X

* Y-X-Y

* Y-Z-Y

* Z-Y-Z

* Z-X-Z

à Tait-Bryan Angles

Tait-Bryan angles are a special type of Euler angles, involving all three axes in the Cartesian coordinate system. In the Tait-

Bryan convention, each of the three angles in a Euler angle triplet defines the rotation around a different Cartesian axis. For 

example, the first angle may specify the rotation around the z axis, the second around the y axis, and the third around the x 

axis - resulting in a z-y-x rotation. The Tait-Bryan angle convention gives a total number of six possible rotations about 

three axes in a Cartesian coordinate system. In all of them, each rotation occurs about a new axis. Each of these are given 

below:

* X-Z-Y

* X-Y-Z

* Y-X-Z

* Y-Z-X

* Z-Y-X

* Z-X-Y
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* X-Z-Y

* X-Y-Z

* Y-X-Z

* Y-Z-X

* Z-Y-X

* Z-X-Y

à Intrinsic Rotations

Generally, rotations can be divided into two categories: intrinsic rotations and extrinsic rotations. Both systems is per-

fectably able to express any rotation and it is in fact possible to convert a rotation expressed in the intrinsic system into a 

rotation expressed in the extrinsic system and vice versa. The three elemental rotations may occur either about the axes of 

the original coordinate system, which remains motionless (extrinsic rotations), or about the axes of the rotating coordinate 

system, which changes its orientation after each elemental rotation (intrinsic rotations). As such there is no particular 

reason to favar one system from the other - often it depends on the problem at hand. Definitions of both systems follow 

below.

Intrinsic rotations are elemental rotations that occur about the axes of a Cartesian XYZ coordinate system attached to a 

moving body. Therefore, they change their orientation after each elemental rotation. The XYZ body coordinate system 

rotates, while the XYZ world coordinate system is fixed. Starting with XYZ body coordinate system overlapping the XYZ 

world coordinate system, a composition of three intrinsic rotations can be used to reach any target orientation for XYZ.

Both Proper Euler angles and Tait-Bryan can be defined by intrinsic rotations. The rotated frame (Body) XYZ may be 

imagined to be initially aligned with the fixed frame (World) XYZ, before undergoing the three elemental rotations 

represented by either Proper Euler angles or Tait-Bryan angles. This is shown in figure 6.

For Tait-Bryan angles the successive intrinsic orientations may be denoted as follows:

è X0-Y0-Z0 (initial)

è X1-Y1-Z1 (after first rotation)

è X2-Y2-Z2 (after second rotation)

è X3-Y3-Z3 (after third rotation)

Figure 6
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Figure 6

Figures 7, 8, and 9 show successive Tait-Bryan intrinsic rotations applied in the order ZYX. Initially, the world coordinate 

frame is aligned with the body coordinate frame. The fixed world coordinate axes are denoted XYZ and the axes of the 

moving body frame are denoted X0Y0Z0 as shown in figure 6.  The first rotation is performed about the Z-axis, where the 

body frame is rotated an angle Ψ counterclockwise. This turns the X -and Y axes of the body frame into a new orientation - 

these axes are now denoted X1 and Y1, as shown in the first frame in figure 7. The second rotation, rotates the body frame 

an angle Θ counterclockwise about the Y1-axis, changing the orientation of the (old) X1 -and Z0 axes, which now are 

denoted X2 -and Z1, as shown in the second frame in figure 8. The final rotation, rotates the body frame an angle Φ counter-

clockwise about the X2 axis, turning the (old) Y1 -and Z1 axes into Y2 -and Z2, as show in the last frame in figure 9. It is 

important to note that the intrinsic Tait-Bryan rotation sequence shown in figures 7, 8, and 9, uses the Tait-Bryan ZYX 

rotation order.

Figure 7

Figure 8
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Figure 8

Figure 9

à Extrinsic Rotations

Extrinsic rotations are elemental rotations that occur about the axes of the fixed world coordinate system, represented by a 

Cartesian XYZ coordinate system. The XYZ body coordinate system rotates, while the XYZ body coordinate system is 

fixed. Simlar to the intrinsic system, the world coordinate system and the body coordinate system are initially overlapping, 

as shown in figure 10. A composition of three extrinsic rotations can be used to reach any target orientation for XYZ. The 

Proper Euler or Tait-Bryan angles are the amplitudes of these elemental rotations. 

For Tait-Bryan angles the successive extrinsic ZYX orientations may be denoted as follows:
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è Body -and world coordinate system align (initial).

è First rotation is performed about the fixed Z-axis of the world frame.

è Second rotation is performed about the fixed Y-axis of the world frame.

è Third rotation is performed about the fixed X-axis of the world frame.

Figure 10

Figures 11, 12, and 13 show successive Tait-Bryan extrinsic rotations applied in the order XYZ. NOTE: here we have 

reversed the order of rotation, compared to the intrinsic rotations performed above. Initially, the world coordinate frame is 

aligned with the body coordinate frame. In both coordinate systems, the world coordinate system and the body coordinate 

system, the axes are denoted XYZ, since all successive rotations are performed around the fixed world frame. The first 

rotation is performed about the X-axis in the world coordinate system, where the system is rotated an angle Φ counterclock-

wise, as shown in the first frame in figure 11. The second rotation is performed about the Y-axis in the world coordinate 

system, where the system is rotated an angle Θ counterclockwise, as shown in the second frame in figure 12. Finally, the 

extrinsic rotation sequence finishes by rotation the about the Z-axis in the world coordinate system, where the system is 

rotated an angle Ψ counterclockwise, as shown in the third -and last frame in figure 13.

Figure 11
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Figure 11

Figure 12

Figure 13
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Figure 13

From the above it follows that ány extrinsic rotation is equivalent to an intrinsic rotation by the same angles but with 

inverted order of elemental rotations, and vice versa. For instance, the intrinsic rotations Z-Y-X by respective angles Ψ, Θ, Φ 

are equivalent to the extrinsic rotations X-Y.Z by angles Φ, Θ, Ψ. Both are represented by matrices as shown below:

(54)R = RzyxHΨ, Θ, Φ L = RzHΨL RyHΘL RxHΦL HintrinsicL
(55)R = RxyzHΦ, Θ, ΨL = RxHΦL RyHΘL RzHΨL HextrinsicL

à Change of Basis

Mathematically, an active change of a vector means an operation that takes a vector and returns a different vector. A 

passive change leaves the vector alone, but changes the basis that is used to describe that vector. 

We seek a releationship between two orthonormal bases with a common origin. The first thing to notice is that the transfor-

mation is linear, which can be seen from the definition of a vector basis. For a set of basis vectors (i, j, k), every vector can 

be expanded as a linear combination:

(56)v = v1 i + v2 j + v3 k

Since any other basis is comprised of vectors, the vectors of the new basis, denoted (i', j', k'), may be expanded in the old 

basis:

(57)i' = a11 i + a12 j + a13 k

(58)j' = a21 i + a22 j + a23 k

(59)k' = a31 i + a32 j + a33 k

and conversely,

(60)i = b11 i' + b12 j' + b13 k'

(61)j = b21 i' + b22 j' + b23 k'
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(62)k = b31 i' + b32 j' + b33 k'

Passive transformation

In a passive transformation any given vector remains fixed while its basis is transformed. Thus, for a passive transforma-

tion and an arbitrary vector v, we expand in each basis:

(63)
v = v1 i + v2 j + v3 k

= v1
' i' + v2

' j' + v3
' k'

where the basis vectors are related as above.

Active transformation

In a active transformation the basis remains fixed while all vectors are transformed. Thus, for a active transformation and 

two arbitrary vectors v and v' 

(64)v = v1 i + v2 j + v3 k

(65)v' = v1
' i + v2

' j + v3
' k

where the components are releated by

(66)v = v1 i + v2 j + v3 k

(67)v' = v1 i' + v2 j' + v3 k'

à Einstein Summation Convention

Having looked at changing basis of vectors it is easy to see that this involves a lot of vector algebra. To simplify the 

calculations a special convention - called Einstein summation convention or repeated index notation is used. Using index 

notation the three basis vectors are denoted by e
`

i, i = 1, 2, 3, so that

(68)e
`

1 = i
`

(69)e
`

2 = j
`

(70)e
`

3 = k
`

And similarly for  e
`'

i

(71)e
`'

1 = i
`'

(72)e
`'

2 = j
`'

(73)e
`'

3 = k
` '

Therefore, the basis transformations for both passive -and active transformations can be written as

(74)e
`'

i = â
j=1

3

aij e
`

j

(75)e
`

i = â
j=1

3

bij e
`'

j
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For the vector the expansion can be written as

(76)v = â
j=1

3

v j e
`

j

In the above expressions the index j is repeated. Repeated indices are always contained within summations, or phrased 

differently a repeated index implies a summation. Therefore, the summation symbol is typically dropped. The repeated 

index notation is know as Einstein’s convention. Any repeated index is called a dummy index. Since a repeated index 

implies a summation over all possible values of the index, one can always relable a dummy index. Therefore, the above 

expressions can be written as 

(77)â
j=1

3

aij e
`

j � aij e
`

j

(78)â
j=1

3

bij e
`'

j �bij e
`'

j

(79)â
j=1

3

v j e
`

j �v j e
`

j

Since the we can choose any symbol for the repeated index, we can write

(80)v j e
`

j = vk e
`

k

as long as we do not use an index that we have used elsewhere in the same expression. Thus, in the basis change examples 

above, we cannot use i as dummy index because it is used to distinguish three independent equations:

(81)e
`'

1 = a1 j e
`

j

(82)e
`'

2 = a2 j e
`

j

(83)e
`'

3 = a3 j e
`

j

Such an index is called a free index. Free indices must match in every term of an expression. Since the basis is orthonor-

mal, we know that the dot product is given by

(84)e
`

i • e
`

j = ∆ij

where ∆ij is the Kronecker delta, defines as:

(85)∆ij = : 0

1

i ¹ j

i = j
i, j = 1, 2, 3

The Kronecker delta nicely summarizes the rules for computing dot products of orthogonal unit vectors; if the two vectors 

have the same subscript, meaning they are in the same direction, their dot product is one. If they have different subscripts, 

meaning they are in different directions, their dot product is zero.

Wen working with the Kronecker delta function and summations it is important to recall that summation notation is built 

upon a simple protocol: repeated indices indicate a sum over that index from 1 to 3. Therefore, it is important to remember 

that expressions like ∆ij do not imply any summation since there is no repeated index. Below a couple of examples involv-

ing the Kronecker delta are presented.
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Example 1

What is the value of ∆ii? This expression does have a repeated index, and means the sum should be taken over all values of 

i from 1 to 3. This means that:

(86)∆ii = ∆11 + ∆22 + ∆33 = 1 + 1 + 1 = 3

This is of course exactly the same result you would get from ∆ jj or ∆kk . The choice of index is irrelevant, what matters is 

that the index is repeated.

Example 2

What is the value of ∆ij∆ jk? We realize that the first delta will go to zero unless i=j; we can make that substitution in the 

second delta and contact the two deltas into one as:

(87)∆ij ∆ jk = ∆ik

The logic is straightforward: the first delta will be zero unless i = j, and the second delta will be zero unless j = k; this is 

equivalent to saying that the product is zero unless i = k, which is the result reflected on the right side.

Example 3

How would we evaluate the expression xi x j ∆ij? We now have two repeated indices i and j, and we sum over both of them. 

Setting “j” as the “inner” variable and summing over that first (only indexing the “i” counter once “j” runs from 1 to 3):

(88)

xi x j ∆ij =

x1 x1 ∆11 + x1 x2 ∆12 + x1 x3 ∆13 + x2 x1 ∆21 + x2 x2 ∆22 + x2 x3 ∆23 + x3 x1 ∆31 + x3 x2 ∆32 + x3 x3 ∆33

= x1
2 +x2

2 +x3
2

It takes a little practice before being completely comfortable working with Einstein summations. However, it is important 

to remember the it is always possible to write the summations explicitly:

(89)

â
i=1

3 â
j=1

3

xi x j ∆ij = â
i=1

3 Hxi x1 ∆i1 + xi x2 ∆i2 + xi x3 ∆i3L
=

x1 x1 ∆11 + x1 x2 ∆12 + x1 x3 ∆13 + x2 x1 ∆21 + x2 x2 ∆22 + x2 x3 ∆23 + x3 x1 ∆31 + x3 x2 ∆32 + x3 x3 ∆33

= x1
2 +x2

2 +x3
2

Of course, there is no need (nor is it advisable) to do these summations explicitly. The final result could have been deduced 

immediately by recognizing that the product of xi x j ∆ij will be zero unless i = j, and if i = j, the expression simplifies 

to xi x j.

Relationship between basis matrices A and B

Having look at examples of Einstein’s summation convention and the Kroneker delta function we return to the matrices aij 

and bij presented in equations (57-59) and equations (60-62) respectively. The relationship between the matrices aij and bij, 

can be found by substituting one basis change into the other:

(90)

e
`'

i = aij e
`

j

= aijIb jk e
`'

kM
= aij b jk e

`'
k
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Taking the dot product with e
`'

m on each side of the equation (notice that we cannot use i, j, or k), we have

(91)e
`'

i = aij b jk e
`'

k

(92)e
`'

m e
`'

i = e
`'

mIaij b jk e
`'

kM
(93)∆mi = aij b jk e

`'
m e

`'
k

(94)= aij b jk ∆mk

(95)= aij b jm

Since ∆mi = ∆im is the identify matrix I, it follows that

(96)I = aij b jm = AB

Therefore, the matrix B, with components bij, is the inverse to matrix A:

(97)B = A-1

à Passive Rotations

Passive rotation, also known as alias rotation, is when a coordinate system rotates with respect to the point. The active and 

the passive conventions produce opposite rotations.

Consider a passive transformation from e
`

j to e
`

i
' . Substituting for the relationship between the basis vectors, this can be 

written

(98)

vi
' e

`'
i = vi e

`
i

= vi Ibij e
`

j
' M

= Ivi bijM e
`

j
'

Continuing with the passive transformation, taking the dot product of both sides of the equation with each of the three basis 

vectors, e
`

k
' , we get:

(99)vi
' e

`'
i e

`
k
' = Ivi bijM e

`
j
' e

`
k
'

(100)vi
' ∆ik = vi bij ∆ jk

(101)vk
' = vi bik

à Active Rotations

Active rotation, also known as alibi rotation, is when a point is rotated relative to the reference coordinate system and the 

reference coordinate system remains fixed.

Consider an active rotation of a vector v to a new vector v'. To see what is happening, first suppose we have two basis 

vectors, ei
`
 and e

`
i
' , which differ only by a counterclockwise rotation around the z-axis through and angle Ψ. Therefore, we 

can write:

(102)i' = i cosHΨL - j sinHΨL
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(103)j' = i sinHΨL + j cosHΨL
(104)k' = k

So that

(105)aij =

cos HΨL -sinHΨL 0

sin HΨL cosHΨL 0

0 0 1

Now, suppose we want v to be pointing in the x-direction and we want v' to be rotated by an angle Ψ. Then we have

(106)v = vi

(107)v' = vi'

Therefore,

(108)v' = v Hi cosHΨL - j sinHΨLL
(109)v' = i v cosHΨL - j v sinHΨL

So the components of v' in the unprimed basis are

(110)vi
' = @v cos HΨL, -v sin HΨL, 0DT

or, in terms of aij,

(111)vi
' = v j a ji

This is the general relationship between v and v' since in general, if 

(112)e
`

i
' = aij e

`
j

and we require

(113)v = vi e
`

i

(114)v' = vi e
`'

i = vi
' e

`
i

it follows that

(115)vi
' e

`
i = vi e

`'
i

(116)vi
' e

`
i = vi aij e

`
j

(117)vk
' = vi aik

Notice that this transformation is exactly the inverse to the transformation of the basis.

à Rotation Order

When performing elemental rotations around each of the three axes, the order in which the rotations are executed matters. 

That is, performing elemental rotations around the axes in the order z, then y, then x will produce different results than 

performing the same rotations in any of the other five possible orders.

Interpolating the orientation of a rigid body is subtle. In fact, even specifying the orientation is not easy. If we specify 

orientations by amounts of rotation about the three principal axes, then the order of specification is important. For example, 

if a book with its spine facing left is rotated by 90° about the x-axis and the -90° about the y-axis, its spine will face you, 

whereas if the rotations are done in the opposite order, its spine will face down.
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Interpolating the orientation of a rigid body is subtle. In fact, even specifying the orientation is not easy. If we specify 

orientations by amounts of rotation about the three principal axes, then the order of specification is important. For example, 

if a book with its spine facing left is rotated by 90° about the x-axis and the -90° about the y-axis, its spine will face you, 

whereas if the rotations are done in the opposite order, its spine will face down.

When working with rotation of objects, there often exist multiple ways to achieve a desired orientation. As an example, 

consider a book laying on a table face up in front of you. De ne the x-axis as to the right, the y-axis as away from you, and 

the z-axis up. A rotation of Π radians about the y-axis will turn the book so that the back cover is now facing up. Another 

way to achieve the same orientation would be to rotate the book Π radians about the x-axis, and then Π radians about the z-

axis. Thus, there is more than one way to achieve a desired rotation.

à Direction of Rotations

When working with rotations and rotation matrices it is important to be consistent with the direction of rotation - that is 

whether the elemental rotations are performed clockwise or counterclockwise about the coordinate axes.

Counterclockwise rotation

As stated previously an elemental rotation is a rotation about one of the axes of a Coordinate system. The following three 

basic rotation matrices rotate vectors counterclockwise by angles Φ, Θ, and Ψ about the x, y, and z axis respectively in 

three dimensions using the right-hand-rule.

(118)RxHΦL =

1 0 0

0 cosHΦL -sinHΦL
0 sinHΦL cosHΦL

(119)RyHΘL =

cos HΘL 0 sin HΘL
0 1 0

-sinHΘL 0 cos HΘL
(120)RzHΨL =

cos HΨL -sinHΨL 0

sin HΨL cosHΨL 0

0 0 1

Clockwise rotation

Suppose that the rotations are performed about the same axes as shown for the counterclockwise rotations above, but this 

time the rotations are performed clockwise by angles Φ, Θ, and Ψ about the x, y, and z axis respectively using the right-hand-

rule.

Inverting the direction of rotation corresponds to inserting  -Φ, -Θ, and -Ψ in the elemental rotation matrices in equations 

(118), (119), and (120) respectively.

(121)RxH-ΦL =

1 0 0

0 cosH-ΦL -sinH-ΦL
0 sinH-ΦL cosH-ΦL =

1 0 0

0 cosHΦL sinHΦL
0 -sinHΦL cosHΦL

(122)RyH-ΘL =

cosH-ΘL 0 sinH-ΘL
0 1 0

-sinH-ΘL 0 cosH-ΘL =

cosHΘL 0 -sinHΘL
0 1 0

sinHΘL 0 cosHΘL
(123)RzH-ΨL =

cosH-ΨL -sinH-ΨL 0

sinH-ΨL cosH-ΨL 0

0 0 1
=

cosHΨL sinHΨL 0

-sinHΨL cosHΨL 0

0 0 1

Generally, the relationship between clockwise -and counterclockwise rotations in a right-handed coordinate system can be 

written as:
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Generally, the relationship between clockwise -and counterclockwise rotations in a right-handed coordinate system can be 

written as:

(124)RxH-ΦL = @Rx HΦLD-1 = @RxHΦLDT

(125)RyH-ΘL = ARy HΘLE-1 = ARy HΘLET

(126)RzH-ΨL = @Rz HΨLD-1 = @RzHΨLDT

à Angle Notation

When studying rotations there seems to be different notations for the axis angles depending on the topic being adressed. 

The following shows a list of different angle notations often found in the literature:

Definition: Angle Notation

In a regular right-handed Cartesian coordinate system the symbols denoting the angle rotation 
around the principal axes are often given the following labels:

Rotation around the x-axis: Α, Φ, r, roll, bank
Rotation around the y-axis: Β, Θ, p, pitch, elevation
Rotation around the z-axis: Γ, Ψ, y, yaw, heading

Proper Euler angles: the symbols Α, Β, Γ are often used in this convention.
Tait-Bryan angles: the symbols, Φ, Θ, Ψ are often used in this convention. 

à Coordinate System Convention

Left-handed or right-handed coordinate system? As mentioned ealier there is no standard convention specifying which 

coordinate system to use when working with 3D graphics. Therefore, it is up to the clients using the graphics library or API 

to adapt to the convention used. 

Right-handed coordinate system

The 3D coordinate system shown in figure 1 is right-handed. By convention, positive rotations in a right-handed system are 

such that, when looking from a positive axis toward the origin, a 90° counterclockwise rotation will transform one positive 

axis into the other.

Left-handed coordinate system

The 3D coordinate system shown in figure 2 is left-handed. By convention, positive rotations in a left-handed system are 

such that, when looking from a positive axis toward the origin, a 90° clockwise rotation will transform one positive axis 

into the other.

Conversion from right to left and left to right

Sometimes conversion between left -and right-handed coordinates are needed. The matrix that converts from points 

represented in one to points represented in the other is its own inverse, and is given by equation (127). Notice that the 

effect of multiplying a 3D vector with this matrix is that the x-component in the resulting vector is inverted. This transforma-

tion matrix corresponds to converting between the coordinate systems presented in figure 1 and figure 2.
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(127)MR¬L = ML¬R =

-1 0 0

0 1 0

0 0 1

Using equation (127) on a vector defined in a right-handed coordinate system is equivalent to viewing the first coordinate 

system in a mirror. Such transformations are known as reflective transformations and will take a right-handed coordinate 

system into a left-handed coordinate system. The length of any vectors will remain unchanged. The x-component of these 

vectors will simply be replaced by its negative in the new coordinate system.

Rotation in 2D
Although, the primary focus in this notebook is to study rotations of geometries in three dimensions, we will briefly look at 

an example of rotating a square in two dimensions. 

Example

A square is composed of the four points a = (1, 5), b = (5, 5), c = (1, 1), and d = (5, 1). Determine the coordinates of the 

four points if the square is rotated by an angle of 15 degree counterclockwise. 

Below different solutions to this problem is presented. Initially, the problem is solved manually - that is without using 

Mathematica. Then different solutions using Mathematica is presented.

à Solution - manual

When a point (x, y) is rotated about the origin (0, 0) counterclockwise by an angle Θ, the coordinates of the new point are

x' = x cosHΘL - y sinHΘL
y' = x sinHΘL + y cosHΘL

Thus, when a point (x, y) is rotated about another point (p, q) counterclockwise by an angle Θ, we can compute the coordi-

nates of the new point, denoted (x', y'), using the following steps:

1) Translating the entire plane so that (p, q) goes to the origin

2) Perform the rotation

3) Translate the entire plane back

To translate (p, q) to the origin, we subtract p from the x-coordinate and q from the y-coordinate and to compensate for this 

operation we add p and q instead of subtracting them after having performed the rotation.

x' = Hx - pL cosHΘL - Hy - qL sinHΘL + p

y' = Hx - pL sinHΘL + Hy - qL cosHΘL + q

Using a rotation matrix this can be written as
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x'

y' =
cos HΘL -sinHΘL
sin HΘL cos HΘ

x - p

y - q
+

p

q

Using the above equation we can calculate the position of the four points a, b, c, and d after rotating these 15 degrees 

counterclockwise from the center point (3, 3).

a =
cosH15L -sinH15L
sinH15L cosH15L 1 - 3

5 - 3
+

3

3
=

1+ 3

2 2

1- 3

2 2

-1+ 3

2 2

1+ 3

2 2

-2

2
+

3

3
=

3 - 6

3 + 2
»

0.55051

4.41421

b =
cosH15L -sinH15L
sinH15L cosH15L 5 - 3

5 - 3
+

3

3
=

1+ 3

2 2

1- 3

2 2

-1+ 3

2 2

1+ 3

2 2

2

2
+

3

3
=

3 + 2

3 + 6
»

4.41421

5.44949

c =
cosH15L -sinH15L
sinH15L cosH15L 1 - 3

1 - 3
+

3

3
=

1+ 3

2 2

1- 3

2 2

-1+ 3

2 2

1+ 3

2 2

-2

-2
+

3

3
=

3 - 2

3 - 6
»

1.58579

0.55051

d =
cosH15L -sinH15L
sinH15L cosH15L 5 - 3

1 - 3
+

3

3
=

1+ 3

2 2

1- 3

2 2

-1+ 3

2 2

1+ 3

2 2

2

-2
+

3

3
=

3 + 6

3 - 2
»

5.44949

1.58579

à Solution - using Mathematica and RotationTransform

Let us define a function that allows us to create a square given the length of the sides and the center point of the square.

In[1]:=
createSquare@edgeLength_?NumericQ,

center : 8xCenter_?NumericQ, yCenter_?NumericQ<D := Module@
H* ALLOCATE LOCAL VARIABLES *L
8points, p0, p1, p2, p3<,

H* DEFINE POINTS *L

p0 = 8xCenter - H1 � 2L * edgeLength, yCenter + H1 � 2L * edgeLength<;

p1 = 8xCenter + H1 � 2L * edgeLength, yCenter + H1 � 2L * edgeLength<;

p2 = 8xCenter - H1 � 2L * edgeLength, yCenter - H1 � 2L * edgeLength<;

p3 = 8xCenter + H1 � 2L * edgeLength, yCenter - H1 � 2L * edgeLength<;

points = 8p0, p1, p2, p3<
D

To rotate the square around a given point, we define a function that takes the square points as input and rotates these an 

angle counterclockwise around a specified point. Note that we use Mathematica’s internal function RotationTransform to 

implement the rotation.
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To rotate the square around a given point, we define a function that takes the square points as input and rotates these an 

angle counterclockwise around a specified point. Note that we use Mathematica’s internal function RotationTransform to 

implement the rotation.

In[2]:=
rotateSquare@points_, angle_?NumericQ,

pivot : 8xCenter_?NumericQ, yCenter_?NumericQ<D :=

Map@RotationTransform@angle Degree, pivotD, pointsD;

In order to visualize the square before and after the rotation we define a function that allows us to display the square given 

a list of points representing the vertices of the square.

In[3]:=
drawSquare@points_D �; HLength@pointsD == 4L := Module@

H* ALLOCATE LOCAL VARIABLES *L
8 p0, p1, p2, p3, pCenter<,

H* CREATE VERTICES *L
vertex0 = Point@points@@1DDD;

vertex1 = Point@points@@2DDD;

vertex2 = Point@points@@3DDD;

vertex3 = Point@points@@4DDD;

vertexCenter = Point@Hpoints@@1DD + points@@4DDL � 2D;

H* CREATE EDGES *L
edge01 = Line@8points@@1DD, points@@2DD<D;

edge02 = Line@8points@@1DD, points@@3DD<D;

edge13 = Line@8points@@2DD, points@@4DD<D;

edge23 = Line@8points@@3DD, points@@4DD<D;

H* CREATE GRAPHICS FOR VERTICES *L
p0 = Graphics@8RGBColor@1, 0, 0D, PointSize@0.1D, vertex0<D;

p1 = Graphics@8RGBColor@0, 1, 0D, PointSize@0.1D, vertex1<D;

p2 = Graphics@8RGBColor@0, 0, 1D, PointSize@0.1D, vertex2<D;

p3 = Graphics@8RGBColor@1, 1, 0D, PointSize@0.1D, vertex3<D;

pCenter = Graphics@8RGBColor@0, 0, 0D, PointSize@0.03D, vertexCenter<D;

H* CREATE GRAPHICS FOR EDGES *L
e01 = Graphics@8RGBColor@0, 0, 0D, Thickness@0.01D, edge01<D;

e02 = Graphics@8RGBColor@0, 0, 0D, Thickness@0.01D, edge02<D;

e13 = Graphics@8RGBColor@0, 0, 0D, Thickness@0.01D, edge13<D;

e23 = Graphics@8RGBColor@0, 0, 0D, Thickness@0.01D, edge23<D;

Show@8p0, p1, p2, p3, pCenter, e01, e02, e13, e23<,

AxesLabel ® 8"x", "y"<, Axes ® True, AspectRatio ® 1,

AxesOrigin ® 80, 0<, ImageSize ® AutomaticD
D
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Let us test our functions. First we create a square with a length of 4 centered at (3, 3).

In[4]:=
squarePoints = createSquare@4, 83, 3<D

Out[4]= 881, 5<, 85, 5<, 81, 1<, 85, 1<<

To visualize our square we call our drawSquare function.

In[5]:=
drawSquare@squarePointsD

Out[5]=

1 2 3 4 5
x

1

2

3

4

5

y

We would like to rotate the square 15 degrees counterclockwise from the center point (3, 3). To accomplish this we call 

our rotateSquare function.
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In[6]:=
newPoints = rotateSquare@squarePoints, 15, 83, 3<D

Out[6]= ::-
3

2
J-2 + 2 N -

5 J-1 + 3 N
2 2

+
1 + 3

2 2
,

-1 + 3

2 2
+

5 J1 + 3 N
2 2

-
3

2
J-2 + 6 N>,

:-
3

2
J-2 + 2 N -

5 J-1 + 3 N
2 2

+

5 J1 + 3 N
2 2

,

5 J-1 + 3 N
2 2

+

5 J1 + 3 N
2 2

-
3

2
J-2 + 6 N>,

:-
3

2
J-2 + 2 N -

-1 + 3

2 2
+
1 + 3

2 2
,

-1 + 3

2 2
+
1 + 3

2 2
-
3

2
J-2 + 6 N>,

:-
3

2
J-2 + 2 N -

-1 + 3

2 2
+

5 J1 + 3 N
2 2

,
5 J-1 + 3 N

2 2
+
1 + 3

2 2
-
3

2
J-2 + 6 N>>

Let us visualize the result of the rotation.
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In[7]:=
drawSquare@newPointsD

Out[7]=

1 2 3 4 5
x

1

2

3

4

5

y

à Solution - using Mathematica without using RotationTransform

In the solution presented above we use the internal function RotationTransform in order to perform the rotation of the 

square. Below we present an alternative solution which accomplishes the same result, but without using RotationTransform 

instead we use the rotation matrix given below:

R =
cos HΘL -sinHΘL
sin HΘL cos HΘ
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In[8]:=
rotateSquareAlternative@points_, angle_?NumericQ,

pivot : 8xCenter_?NumericQ, yCenter_?NumericQ<D �;

HLength@pointsD == 4L := Module@
H* ALLOCATE LOCAL VARIABLES *L

8 p0, p1, p2, p3<,

H* CREATE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

Rmat = 88Cos@angle DegreeD, -Sin@angle DegreeD<,

8Sin@angle DegreeD, Cos@angle DegreeD<<;

Table@Rmat.Hpoints@@iDD - pivotL + pivot, 8i, 1, Length@pointsD<D
D

In[9]:=
newPointsAlternative =

rotateSquareAlternative@squarePoints, 15, 83, 3<D �� N

Out[9]= 880.55051, 4.41421<, 84.41421, 5.44949<,
81.58579, 0.55051<, 85.44949, 1.58579<<
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In[10]:=
drawSquare@newPointsAlternativeD

Out[10]=

1 2 3 4 5
x

1

2

3

4

5

y

Lets us verify that the two solutions give the same result

In[11]:=
newPointsAlternative � newPoints

Out[11]=
True
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Rotation Matrices

Defining rotation matrices

à Rotating angle Ψ around X

In[12]:=
RmatPsiAroundX = RotationMatrix@Ψ, 81, 0, 0<D;

RmatPsiAroundX �� MatrixForm

Out[13]//MatrixForm=

1 0 0
0 Cos@ΨD -Sin@ΨD
0 Sin@ΨD Cos@ΨD

à Rotating angle Ψ around Y

In[14]:=
RmatPsiAroundY = RotationMatrix@Ψ, 80, 1, 0<D;

RmatPsiAroundY �� MatrixForm

Out[15]//MatrixForm=

Cos@ΨD 0 Sin@ΨD
0 1 0

-Sin@ΨD 0 Cos@ΨD

à Rotating angle Ψ around Z

In[16]:=
RmatPsiAroundZ = RotationMatrix@Ψ, 80, 0, 1<D;

RmatPsiAroundZ �� MatrixForm

Out[17]//MatrixForm=

Cos@ΨD -Sin@ΨD 0
Sin@ΨD Cos@ΨD 0

0 0 1
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à Rotating angle Θ around X

In[18]:=
RmatThetaAroundX = RotationMatrix@Θ, 81, 0, 0<D;

RmatThetaAroundX �� MatrixForm

Out[19]//MatrixForm=

1 0 0
0 Cos@ΘD -Sin@ΘD
0 Sin@ΘD Cos@ΘD

à Rotating angle Θ around Y

In[20]:=
RmatThetaAroundY = RotationMatrix@Θ, 80, 1, 0<D;

RmatThetaAroundY �� MatrixForm

Out[21]//MatrixForm=

Cos@ΘD 0 Sin@ΘD
0 1 0

-Sin@ΘD 0 Cos@ΘD

à Rotating angle Θ around Z

In[22]:=
RmatThetaAroundZ = RotationMatrix@Θ, 80, 0, 1<D;

RmatThetaAroundZ �� MatrixForm

Out[23]//MatrixForm=

Cos@ΘD -Sin@ΘD 0
Sin@ΘD Cos@ΘD 0

0 0 1

à Rotating angle Φ around X

In[24]:=
RmatPhiAroundX = RotationMatrix@Φ, 81, 0, 0<D;

RmatPhiAroundX �� MatrixForm

Out[25]//MatrixForm=

1 0 0
0 Cos@ΦD -Sin@ΦD
0 Sin@ΦD Cos@ΦD
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à Rotating angle Φ around Y

In[26]:=
RmatPhiAroundY = RotationMatrix@Φ, 80, 1, 0<D;

RmatPhiAroundY �� MatrixForm

Out[27]//MatrixForm=

Cos@ΦD 0 Sin@ΦD
0 1 0

-Sin@ΦD 0 Cos@ΦD

à Rotating angle Φ around Z

In[28]:=
RmatPhiAroundZ = RotationMatrix@Φ, 80, 0, 1<D;

RmatPhiAroundZ �� MatrixForm

Out[29]//MatrixForm=

Cos@ΦD -Sin@ΦD 0
Sin@ΦD Cos@ΦD 0

0 0 1

Rotation using proper Euler angles

Euler X - Z - X

à Euler X-Z-X (Rotating Ψ around X, Θ around Z,  Φ around X)

In[30]:=
RmatXZX = RmatPsiAroundX.RmatThetaAroundZ.RmatPhiAroundX;

RmatXZX �� MatrixForm

Out[31]//MatrixForm=

Cos@ΘD -Cos@ΦD Sin@ΘD Sin@ΘD Sin@ΦD
Cos@ΨD Sin@ΘD Cos@ΘD Cos@ΦD Cos@ΨD - Sin@ΦD Sin@ΨD -Cos@ΘD Cos@ΨD Sin@ΦD - Cos
Sin@ΘD Sin@ΨD Cos@ΨD Sin@ΦD + Cos@ΘD Cos@ΦD Sin@ΨD Cos@ΦD Cos@ΨD - Cos@ΘD Sin@
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à Euler X-Z-X (Rotating Ψ around X, Θ around Z,  Φ around X) - using RotationTransform

In[32]:=
RotationTransform@Ψ, 81, 0, 0<D.RotationTransform@Θ, 80, 0, 1<D.

RotationTransform@Φ, 81, 0, 0<D

Out[32]=
TransformationFunctionB

Cos@ΘD -Cos@ΦD Sin@ΘD
Cos@ΨD Sin@ΘD Cos@ΘD Cos@ΦD Cos@ΨD -

Sin@ΦD Sin@ΨD
-Cos -

Cos D
Sin@ΘD Sin@ΨD Cos@ΨD Sin@ΦD +

Cos@ΘD Cos@ΦD Sin@ΨD
Cos -

Cos D
0 0

F

In[33]:=
RmatZYX = RmatPhiAroundZ.RmatThetaAroundY.RmatPsiAroundX;

RmatZYX �� MatrixForm

Out[34]//MatrixForm=

Cos@ΘD Cos@ΦD -Cos@ΨD Sin@ΦD + Cos@ΦD Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD Sin@ΘD + Sin
Cos@ΘD Sin@ΦD Cos@ΦD Cos@ΨD + Sin@ΘD Sin@ΦD Sin@ΨD Cos@ΨD Sin@ΘD Sin@ΦD - Cos

-Sin@ΘD Cos@ΘD Sin@ΨD Cos@ΘD Cos@ΨD

Euler X - Y - X

à Euler X-Y-X (Rotating Ψ around X, Θ around Y,  Φ around X)

In[35]:=
RmatXYX = RmatPsiAroundX.RmatThetaAroundY.RmatPhiAroundX;

RmatXYX �� MatrixForm

Out[36]//MatrixForm=

Cos@ΘD Sin@ΘD Sin@ΦD Cos@ΦD Sin@ΘD
Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD - Cos@ΘD Sin@ΦD Sin@ΨD -Cos@ΨD Sin@ΦD - Cos@ΘD Cos

-Cos@ΨD Sin@ΘD Cos@ΘD Cos@ΨD Sin@ΦD + Cos@ΦD Sin@ΨD Cos@ΘD Cos@ΦD Cos@ΨD - Sin
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à Euler X-Y-X (Rotating Ψ around X, Θ around Y,  Φ around X) - using RotationTransform

In[37]:=
RotationTransform@Ψ, 81, 0, 0<D.RotationTransform@Θ, 80, 1, 0<D.

RotationTransform@Φ, 81, 0, 0<D

Out[37]=
TransformationFunctionB

Cos@ΘD Sin@ΘD Sin@ΦD
Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD -

Cos@ΘD Sin@ΦD Sin@ΨD
-Cos -

Cos D
-Cos@ΨD Sin@ΘD Cos@ΘD Cos@ΨD Sin@ΦD +

Cos@ΦD Sin@ΨD
Cos -

Sin D
0 0

F

Euler Y - X - Y

à Euler Y-X-Y (Rotating Ψ around Y, Θ around X,  Φ around Y)

In[38]:=
RmatYXY = RmatPsiAroundY.RmatThetaAroundX.RmatPhiAroundY;

RmatYXY �� MatrixForm

Out[39]//MatrixForm=

Cos@ΦD Cos@ΨD - Cos@ΘD Sin@ΦD Sin@ΨD Sin@ΘD Sin@ΨD Cos@ΨD Sin@ΦD + Cos@ΘD Cos
Sin@ΘD Sin@ΦD Cos@ΘD -Cos@ΦD Sin@ΘD

-Cos@ΘD Cos@ΨD Sin@ΦD - Cos@ΦD Sin@ΨD Cos@ΨD Sin@ΘD Cos@ΘD Cos@ΦD Cos@ΨD - Sin

à Euler Y-X-Y (Rotating Ψ around Y, Θ around X,  Φ around Y) - using RotationTransform

In[40]:=
RotationTransform@Ψ, 80, 1, 0<D.RotationTransform@Θ, 81, 0, 0<D.

RotationTransform@Φ, 80, 1, 0<D

Out[40]=
TransformationFunctionB

Cos@ΦD Cos@ΨD -

Cos@ΘD Sin@ΦD Sin@ΨD
Sin@ΘD Sin@ΨD Cos +

Cos D
Sin@ΘD Sin@ΦD Cos@ΘD

-Cos@ΘD Cos@ΨD Sin@ΦD -

Cos@ΦD Sin@ΨD
Cos@ΨD Sin@ΘD Cos -

Sin D
0 0

F

rotating_platonic_solids.nb 35



Euler Y - Z - Y

à Euler Y-Z-Y (Rotating Ψ around Y, Θ around Z,  Φ around Y)

In[41]:=
RmatYZY = RmatPsiAroundY.RmatThetaAroundZ.RmatPhiAroundY;

RmatYZY �� MatrixForm

Out[42]//MatrixForm=

Cos@ΘD Cos@ΦD Cos@ΨD - Sin@ΦD Sin@ΨD -Cos@ΨD Sin@ΘD Cos@ΘD Cos@ΨD Sin@ΦD + Cos
Cos@ΦD Sin@ΘD Cos@ΘD Sin@ΘD Sin@ΦD

-Cos@ΨD Sin@ΦD - Cos@ΘD Cos@ΦD Sin@ΨD Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD - Cos@ΘD Sin

à Euler Y-Z-Y (Rotating Ψ around Y, Θ around Z,  Φ around Y) - using RotationTransform

In[43]:=
RotationTransform@Ψ, 80, 1, 0<D.RotationTransform@Θ, 80, 0, 1<D.

RotationTransform@Φ, 80, 1, 0<D

Out[43]=
TransformationFunctionB

Cos@ΘD Cos@ΦD Cos@ΨD -

Sin@ΦD Sin@ΨD
-Cos@ΨD Sin@ΘD Cos +

Cos D
Cos@ΦD Sin@ΘD Cos@ΘD

-Cos@ΨD Sin@ΦD -

Cos@ΘD Cos@ΦD Sin@ΨD
Sin@ΘD Sin@ΨD Cos -

Cos D
0 0

F

Euler Z - Y - Z 

à Euler Z-Y-Z (Rotating Ψ around Z,  Θ around Y, Φ around Z)

In[44]:=
RmatZYZ = RmatPsiAroundZ.RmatThetaAroundY.RmatPhiAroundZ;

RmatZYZ �� MatrixForm

Out[45]//MatrixForm=

Cos@ΘD Cos@ΦD Cos@ΨD - Sin@ΦD Sin@ΨD -Cos@ΘD Cos@ΨD Sin@ΦD - Cos@ΦD Sin@ΨD Cos
Cos@ΨD Sin@ΦD + Cos@ΘD Cos@ΦD Sin@ΨD Cos@ΦD Cos@ΨD - Cos@ΘD Sin@ΦD Sin@ΨD Sin

-Cos@ΦD Sin@ΘD Sin@ΘD Sin@ΦD
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à Rotating Ψ around Z,  Θ around Y, and Φ around Z - using RotationTransform

In[46]:=
RotationTransform@Ψ, 80, 0, 1<D.RotationTransform@Θ, 80, 1, 0<D.

RotationTransform@Φ, 80, 0, 1<D

Out[46]=
TransformationFunctionB

Cos@ΘD Cos@ΦD Cos@ΨD -

Sin@ΦD Sin@ΨD
-Cos@ΘD Cos@ΨD Sin -

Cos@ΦD Sin@ΨD
Cos@ΨD Sin@ΦD +

Cos@ΘD Cos@ΦD Sin@ΨD
Cos@ΦD Cos@ΨD -

Cos@ΘD Sin@ΦD Sin D
-Cos@ΦD Sin@ΘD Sin@ΘD Sin@ΦD

0 0

F

Euler Z - X - Z 

à Euler Z-X-Z (Rotating Ψ around Z, Θ around X, Φ around Z)

In[47]:=
RmatZXZ = RmatPsiAroundZ.RmatThetaAroundX.RmatPhiAroundZ;

RmatZXZ �� MatrixForm

Out[48]//MatrixForm=

Cos@ΦD Cos@ΨD - Cos@ΘD Sin@ΦD Sin@ΨD -Cos@ΨD Sin@ΦD - Cos@ΘD Cos@ΦD Sin@ΨD Sin
Cos@ΘD Cos@ΨD Sin@ΦD + Cos@ΦD Sin@ΨD Cos@ΘD Cos@ΦD Cos@ΨD - Sin@ΦD Sin@ΨD -Cos

Sin@ΘD Sin@ΦD Cos@ΦD Sin@ΘD

à Euler Z-X-Z (Rotating Ψ around Z, Θ around X, Φ around Z) - using RotationTransform

In[49]:=
RotationTransform@Ψ, 80, 0, 1<D.RotationTransform@Θ, 81, 0, 0<D.

RotationTransform@Φ, 80, 0, 1<D

Out[49]=
TransformationFunctionB

Cos@ΦD Cos@ΨD -

Cos@ΘD Sin@ΦD Sin@ΨD
-Cos@ΨD Sin@ΦD -

Cos@ΘD Cos@ΦD Sin@ D
Cos@ΘD Cos@ΨD Sin@ΦD +

Cos@ΦD Sin@ΨD
Cos@ΘD Cos@ΦD Cos@Ψ -

Sin@ΦD Sin@ΨD
Sin@ΘD Sin@ΦD Cos@ΦD Sin@ΘD

0 0

F
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Rotation using Tait–Bryan angles

Tait-Bryan X - Z - Y

à Tait-Bryan X-Z-Y (Rotating Ψ around X, Φ around Z, Θ around Y)

In[50]:=
RmatXZY = RmatPsiAroundX.RmatPhiAroundZ.RmatThetaAroundY;

RmatXZY �� MatrixForm

Out[51]//MatrixForm=

Cos@ΘD Cos@ΦD -Sin@ΦD Cos@ΦD Sin@ΘD
Cos@ΘD Cos@ΨD Sin@ΦD + Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD Cos@ΨD Sin@ΘD Sin@ΦD - Cos

-Cos@ΨD Sin@ΘD + Cos@ΘD Sin@ΦD Sin@ΨD Cos@ΦD Sin@ΨD Cos@ΘD Cos@ΨD + Sin@ΘD Sin

à Tait-Bryan X-Z-Y (Rotating Ψ around X, Φ around Z, Θ around Y) - using RotationTransForm

In[52]:=
RotationTransform@Ψ, 81, 0, 0<D.RotationTransform@Φ, 80, 0, 1<D.

RotationTransform@Θ, 80, 1, 0<D

Out[52]=
TransformationFunctionB

Cos@ΘD Cos@ΦD -Sin@ΦD
Cos@ΘD Cos@ΨD Sin@ΦD +

Sin@ΘD Sin@ΨD
Cos@ΦD Cos@ΨD Cos -

Cos D
-Cos@ΨD Sin@ΘD +

Cos@ΘD Sin@ΦD Sin@ΨD
Cos@ΦD Sin@ΨD Cos +

Sin D
0 0

F
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Tait-Bryan X - Y - Z

à Tait-Bryan X-Y-Z (Rotating Ψ around X,  Θ around Y, Φ around Z)

In[53]:=
RmatXYZ = RmatPsiAroundX.RmatThetaAroundY.RmatPhiAroundZ;

RmatXYZ �� MatrixForm

Out[54]//MatrixForm=

Cos@ΘD Cos@ΦD -Cos@ΘD Sin@ΦD
Cos@ΨD Sin@ΦD + Cos@ΦD Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD - Sin@ΘD Sin@ΦD Sin@ΨD -Cos

-Cos@ΦD Cos@ΨD Sin@ΘD + Sin@ΦD Sin@ΨD Cos@ΨD Sin@ΘD Sin@ΦD + Cos@ΦD Sin@ΨD Cos

à Tait-Bryan X-Y-Z (Rotating Ψ around X,  Θ around Y, Φ around Z) - using RotationTransForm

In[55]:=
RotationTransform@Ψ, 81, 0, 0<D.RotationTransform@Θ, 80, 1, 0<D.

RotationTransform@Φ, 80, 0, 1<D

Out[55]=
TransformationFunctionB

Cos@ΘD Cos@ΦD -Cos@ΘD Sin@ΦD
Cos@ΨD Sin@ΦD +

Cos@ΦD Sin@ΘD Sin@ΨD
Cos@ΦD Cos@ΨD -

Sin@ΘD Sin@ΦD Sin@ D
-Cos@ΦD Cos@ΨD Sin@ΘD +

Sin@ΦD Sin@ΨD
Cos@ΨD Sin@ΘD Sin@Φ +

Cos@ΦD Sin@ΨD
0 0

F

Tait-Bryan Y - X - Z

à Tait-Bryan Y-X-Z (Rotation Θ around Y, Ψ around X, Φ around Z)

In[56]:=
RmatYXZ = RmatThetaAroundY.RmatPsiAroundX.RmatPhiAroundZ;

RmatYXZ �� MatrixForm

Out[57]//MatrixForm=

Cos@ΘD Cos@ΦD + Sin@ΘD Sin@ΦD Sin@ΨD -Cos@ΘD Sin@ΦD + Cos@ΦD Sin@ΘD Sin@ΨD Cos
Cos@ΨD Sin@ΦD Cos@ΦD Cos@ΨD

-Cos@ΦD Sin@ΘD + Cos@ΘD Sin@ΦD Sin@ΨD Sin@ΘD Sin@ΦD + Cos@ΘD Cos@ΦD Sin@ΨD Cos
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à Tait-Bryan Y-X-Z (Rotation Θ around Y, Ψ around X, Φ around Z) - using RotationTransForm

In[58]:=
RotationTransform@Θ, 80, 1, 0<D.RotationTransform@Ψ, 81, 0, 0<D.

RotationTransform@Φ, 80, 0, 1<D

Out[58]=
TransformationFunctionB

Cos@ΘD Cos@ΦD +

Sin@ΘD Sin@ΦD Sin@ΨD
-Cos@ΘD Sin@ΦD +

Cos@ΦD Sin@ΘD Sin D
Cos@ΨD Sin@ΦD Cos@ΦD Cos@ΨD

-Cos@ΦD Sin@ΘD +

Cos@ΘD Sin@ΦD Sin@ΨD
Sin@ΘD Sin@ΦD +

Cos@ΘD Cos@ΦD Sin D
0 0

F

Tait-Bryan Y - Z - X

à Tait-Bryan Y-Z-X (Rotating Θ around Y, Φ around Z, Ψ around X)

In[59]:=
RmatYZX = RmatThetaAroundY.RmatPhiAroundZ.RmatPsiAroundX;

RmatYZX �� MatrixForm

Out[60]//MatrixForm=

Cos@ΘD Cos@ΦD -Cos@ΘD Cos@ΨD Sin@ΦD + Sin@ΘD Sin@ΨD Cos@ΨD Sin@ΘD + Cos@ΘD Sin
Sin@ΦD Cos@ΦD Cos@ΨD -Cos@ΦD Sin@Ψ

-Cos@ΦD Sin@ΘD Cos@ΨD Sin@ΘD Sin@ΦD + Cos@ΘD Sin@ΨD Cos@ΘD Cos@ΨD - Sin@ΘD Sin

à Tait-Bryan Y-Z-X (Rotating Θ around Y, Φ around Z, Ψ around X) - using RotationTransForm

In[61]:=
RotationTransform@Θ, 80, 1, 0<D.RotationTransform@Φ, 80, 0, 1<D.

RotationTransform@Ψ, 81, 0, 0<D

Out[61]=
TransformationFunctionB

Cos@ΘD Cos@ΦD -Cos@ΘD Cos@ΨD Sin@ΦD +

Sin@ΘD Sin@ΨD
Cos +

Cos D
Sin@ΦD Cos@ΦD Cos@ΨD

-Cos@ΦD Sin@ΘD Cos@ΨD Sin@ΘD Sin@ΦD +

Cos@ΘD Sin@ΨD
Cos -

Sin D
0 0

F
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Tait-Bryan Z - Y - X

à Tait-Bryan Z-Y-X (Rotating Φ around Z,  Θ around Y, Ψ around X)

In[62]:=
RmatZYX = RmatPhiAroundZ.RmatThetaAroundY.RmatPsiAroundX;

RmatZYX �� MatrixForm

Out[63]//MatrixForm=

Cos@ΘD Cos@ΦD -Cos@ΨD Sin@ΦD + Cos@ΦD Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD Sin@ΘD + Sin
Cos@ΘD Sin@ΦD Cos@ΦD Cos@ΨD + Sin@ΘD Sin@ΦD Sin@ΨD Cos@ΨD Sin@ΘD Sin@ΦD - Cos

-Sin@ΘD Cos@ΘD Sin@ΨD Cos@ΘD Cos@ΨD

à Tait-Bryan Z-Y-X (Rotating Φ around Z,  Θ around Y, Ψ around X) - using RotationTransForm

In[64]:=
RotationTransform@Φ, 80, 0, 1<D.RotationTransform@Θ, 80, 1, 0<D.

RotationTransform@Ψ, 81, 0, 0<D

Out[64]=
TransformationFunctionB

Cos@ΘD Cos@ΦD -Cos@ΨD Sin@ΦD +

Cos@ΦD Sin@ΘD Sin@ΨD
Cos +

Sin D
Cos@ΘD Sin@ΦD Cos@ΦD Cos@ΨD +

Sin@ΘD Sin@ΦD Sin@ΨD
Cos -

Cos D
-Sin@ΘD Cos@ΘD Sin@ΨD

0 0

F

Tait-Bryan Z - X - Y

à Tait-Bryan Z-X-Y (Rotating Φ around Z,  Ψ around X, Θ around Y)

In[65]:=
RmatZXY = RmatPhiAroundZ.RmatPsiAroundX.RmatThetaAroundY;

RmatZXY �� MatrixForm

Out[66]//MatrixForm=

Cos@ΘD Cos@ΦD - Sin@ΘD Sin@ΦD Sin@ΨD -Cos@ΨD Sin@ΦD Cos@ΦD Sin@ΘD + Cos@ΘD Sin
Cos@ΘD Sin@ΦD + Cos@ΦD Sin@ΘD Sin@ΨD Cos@ΦD Cos@ΨD Sin@ΘD Sin@ΦD - Cos@ΘD Cos

-Cos@ΨD Sin@ΘD Sin@ΨD Cos@ΘD Cos@ΨD
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à Tait-Bryan Z-X-Y (Rotating Φ around Z,  Ψ around X, Θ around Y) - using RotationTransForm

In[67]:=
RotationTransform@Φ, 80, 0, 1<D.RotationTransform@Ψ, 81, 0, 0<D.

RotationTransform@Θ, 80, 1, 0<D

Out[67]=
TransformationFunctionB

Cos@ΘD Cos@ΦD -

Sin@ΘD Sin@ΦD Sin@ΨD
-Cos@ΨD Sin@ΦD Cos +

Cos D
Cos@ΘD Sin@ΦD +

Cos@ΦD Sin@ΘD Sin@ΨD
Cos@ΦD Cos@ΨD Sin -

Cos D
-Cos@ΨD Sin@ΘD Sin@ΨD

0 0

F

Tetrahedron
In this section we will implement a couple of functions in Mathematica, that makes it possible to rotate the tetrahedron, 

which is one of the 5 Platonic solids.

Function Definition - Tetrahedron

Below functions related to creating, rotating, and visualizing the tetrahedron are implemented in Mathematica.

à Define createTetrahedron

We define a function in Mathematica which creates a tetahedron based on the input parameters: edgeLength and center, 

where edgeLength specifies the length between the 4 vertices that compose the tetrahedron and center specifies the center 

point of the tetrahedron. The function createTetrahedron returns a list of points, which gives the Cartensian positions of 

the each of the vertices in the tetrahedron.
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In[68]:=
createTetrahedron@edgeLength_?NumericQ,

center : 8xCenter_?NumericQ, yCenter_?NumericQ, zCenter_?NumericQ<D :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8points, p0, p1, p2, p3<,

H* DEFINE POINTS *L
p0 = 8xCenter, yCenter, zCenter + HH1 � 4L * Sqrt@6D * edgeLengthL<;

p1 = 8xCenter, yCenter + HH1 � 3L * Sqrt@3D * edgeLengthL,

zCenter - HH1 � 12L * Sqrt@6D * edgeLengthL<;

p2 = 8xCenter - 0.5 * edgeLength,

yCenter - HH1 � 6L * Sqrt@3D * edgeLengthL,

zCenter - HH1 � 12L * Sqrt@6D * edgeLengthL<;

p3 = 8xCenter + 0.5 * edgeLength,

yCenter - HH1 � 6L * Sqrt@3D * edgeLengthL,

zCenter - HH1 � 12L * Sqrt@6D * edgeLengthL<;

points = 8p0, p1, p2, p3<
D

à Define rotateTetrahedron

We define a function in Mathematica which rotates tetrahedron about the XYZ-axes given the input parameters: points, Φ, 

Θ, and Ψ. The points parameter is a list containing the 4 points representing the 3D coordinates of the vertices in the 

Tetrahedron. The Φ parameter specifies the rotation angle, in degrees, about the X-axis. The Θ parameter specifies the 

rotation angle, in degrees, about the Y-axis. The Ψ parameter specifies the rotation angle, in degrees, about the Z-axis. The 

function rotateTetrahedron returns a list of points, which gives the Cartensian positions of the each of the vertices in the 

tetrahedron after applying the rotation.
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In[69]:=
rotateTetrahedron@points_,

angle : 8phi_?NumericQ, theta_?NumericQ, psi_?NumericQ<D �;

HLength@pointsD == 4L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8rmat, p0, p1, p2, p3, pc, p0new, p1new, p2new, p3new, newpts<,

H* DEFINE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

pc = Hp0 + p1 + p2 + p3L � 4;

H* CREATE ROTATION MATRIX *L
rmat = RotationMatrix@psi Degree, 80, 0, 1<D.

RotationMatrix@theta Degree, 80, 1, 0<D.

RotationMatrix@phi Degree, 81, 0, 0<D;

H* CALCULATE NEW POINTS *L
p0new = pc + rmat.Hp0 - pcL;

p1new = pc + rmat.Hp1 - pcL;

p2new = pc + rmat.Hp2 - pcL;

p3new = pc + rmat.Hp3 - pcL;

newpts = 8p0new, p1new, p2new, p3new<
D

à Define drawTetrahedron

We define a function in Mathematica which is able to display a tetrahedron given the input parameter: points. The points 

parameter is a list containing the 4 points representing the 3D coordinates of the vertices in the tetrahedron. The function 

drawTetrahedron draws the vertices and edges which compose the tetrahedron and displays these in a single graphical 

object.
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In[70]:=
drawTetrahedron@points_D �; HLength@pointsD == 4L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8p0, p1, p2, p3, pc,

v0, v1, v2, v3, vc,

e01, e02, e03, e12, e13, e23<,

H* CREATE POINTS *L
p0 = pointsP1T;

p1 = pointsP2T;

p2 = pointsP3T;

p3 = pointsP4T;

pc = Hp0 + p1 + p2 + p3L � 4;

H* CREATE GRAPHICS FOR VERTICES *L
v0 = Graphics3D@8RGBColor@1, 1, 0D, PointSize@0.1D, Point@p0D<D;

v1 = Graphics3D@8RGBColor@1, 0, 0D, PointSize@0.1D, Point@p1D<D;

v2 = Graphics3D@8RGBColor@0, 1, 0D, PointSize@0.1D, Point@p2D<D;

v3 = Graphics3D@8RGBColor@0, 0, 1D, PointSize@0.1D, Point@p3D<D;

vc = Graphics3D@8RGBColor@0, 0, 0D, PointSize@0.03D, Point@pcD<D;

H* CREATE GRAPHICS FOR EDGES *L
e01 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p0, p1<D<D;

e02 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p2<D<D;

e03 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p3<D<D;

e12 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p2<D<D;

e13 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p3<D<D;

e23 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p3<D<D;

Show@8v0, v1, v2, v3, vc, e01, e02, e03, e12, e13, e23<,

AxesLabel ® 8"x", "y", "z"<, AspectRatio ® 1, Axes ® True,

PlotRange ® All, ImageSize ® Automatic, Boxed ® TrueD
D

Function Test - Tetrahedron

Below we test the functions related to creating, rotating, and visualizing the tetrahedron.

à Test createTetrahedron

We create a tetrahedron with edgelength=5 centered at (5, 5, 5).
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In[71]:=
tetrahedronPoints = createTetrahedron@5, 85, 5, 5<D

Out[71]= ::5, 5, 5 +

5 3

2

2
>, :5, 5 +

5

3
, 5 -

5

2 6
>,
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2 6
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2 3
, 5 -

5

2 6
>>

à Test drawTetrahedron

Below we visualize the tetrahedron created above.

In[72]:=
drawTetrahedron@tetrahedronPointsD
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à Test rotateTetrahedron

Rotating the tetrahedron an angle Φ counterclockwise about the X-axis (Roll)

We rotate the tetrahedron an angle Φ = 45° counterclockwise about the X-axis.

In[73]:=
tetrahedronPointsRotatedAboutX =

rotateTetrahedron@tetrahedronPoints, 845, 0, 0<D;

The tetrahedron rotated an angle Φ = 45° conterclockwise about the X-axis is displayed below.

In[74]:=
drawTetrahedron@tetrahedronPointsRotatedAboutXD
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Rotating the tetrahedron an angle Θ counterclockwise about the Y-axis (Pitch)

We rotate the tetrahedron an angle Θ = 45° counterclockwise about the Y-axis.

In[75]:=
tetrahedronPointsRotatedAboutY =

rotateTetrahedron@tetrahedronPoints, 80, 45, 0<D;

The tetrahedron rotated an angle Θ = 45° conterclockwise about the Y-axis is displayed below.
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In[76]:=
drawTetrahedron@tetrahedronPointsRotatedAboutYD
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Rotating the tetrahedron an angle Ψ counterclockwise about the Z-axis (Yaw)

We rotate the tetrahedron an angle Ψ = 45° counterclockwise about the Z-axis.

In[77]:=
tetrahedronPointsRotatedAboutZ =

rotateTetrahedron@tetrahedronPoints, 80, 0, 45<D;

The tetrahedron rotated an angle Ψ = 45° conterclockwise about the Z-axis is displayed below.
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In[78]:=
drawTetrahedron@tetrahedronPointsRotatedAboutZD
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à Rotating in steps

Step 1: rotating the tetrahedron an angle Φ counterclockwise about the X-axis (Roll)

First we rotate the tetrahedron about the X-axis and stores the result.

In[79]:=
rx = rotateTetrahedron@tetrahedronPoints, 845, 0, 0<D;

Step 2: rotating the tetrahedron from step 1 an angle Θ counterclockwise about the Y-axis (Pitch)

We use the result from step 1 and rotate the tetrahedron a second time - this time about the Y-axis

In[80]:=
ry = rotateTetrahedron@rx, 80, 45, 0<D;

Step 3: rotating the tetrahedron from step 2 an angle Ψ counterclockwise about the Z-axis (Yaw)

We use the result from step 2 and rotate the tetrahedron a third time - this time about the Z-axis
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In[81]:=
rz = rotateTetrahedron@ry, 80, 0, 45<D;

The result of the three consecutive rotations is shown below

In[82]:=
drawTetrahedron@rzD
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Rotating the tetrahedron an angle Φ counterclockwise about the X-axis, then an angle Θ counterclockwise about the 
Y-axis, and finally an angle Ψ counterclockwise about the Z-axis

Instead of applying the rotations separately we can calculate the resulting rotation directly. This is shown below
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In[83]:=
drawTetrahedron@rotateTetrahedron@tetrahedronPoints, 845, 45, 45<DD

Out[83]=

3

4

5

6

7

x

4

6y

2

3

4

5

6

z

Octahedron
In this section we will implement a couple of functions in Mathematica, that makes it possible to rotate the octahedron, 

which is one of the 5 Platonic solids.

Function Definition - Octahedron

Below functions related to creating, rotating, and visualizing the octahedron are implemented in Mathematica.

à Define createOctahedron

We define a function in Mathematica which creates a octahedron based on the input parameters: edgeLength and center, 

where edgeLength specifies the length between the 4 vertices that compose the octahedron and center specifies the center 

point of the octahedron. The function createOctahedron returns a list of points, which gives the Cartensian positions of the 

each of the vertices in the octahedron.
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We define a function in Mathematica which creates a octahedron based on the input parameters: edgeLength and center, 

where edgeLength specifies the length between the 4 vertices that compose the octahedron and center specifies the center 

point of the octahedron. The function createOctahedron returns a list of points, which gives the Cartensian positions of the 

each of the vertices in the octahedron.

In[84]:=
createOctahedron@edgeLength_?NumericQ,

center : 8xCenter_?NumericQ, yCenter_?NumericQ, zCenter_?NumericQ<D :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8points, p0, p1, p2, p3, p4, p5<,

H* DEFINE POINTS *L
p0 = 8xCenter, yCenter, zCenter + HH1 � 2L * Sqrt@2D * edgeLengthL<;

p1 = 8xCenter + HH1 � 2L * edgeLengthL, yCenter + HH1 � 2L * edgeLengthL,

zCenter<;

p2 = 8xCenter - HH1 � 2L * edgeLengthL, yCenter - HH1 � 2L * edgeLengthL,

zCenter<;

p3 = 8xCenter + HH1 � 2L * edgeLengthL, yCenter - HH1 � 2L * edgeLengthL,

zCenter<;

p4 = 8xCenter - HH1 � 2L * edgeLengthL, yCenter + HH1 � 2L * edgeLengthL,

zCenter<;

p5 = 8xCenter, yCenter, zCenter - HH1 � 2L * Sqrt@2D * edgeLengthL<;

points = 8p0, p1, p2, p3, p4, p5<
D

à Define rotateOctahedron

We define a function in Mathematica which rotates octahedron about the XYZ-axes given the input parameters: points, Φ, 

Θ, and Ψ. The points parameter is a list containing the 6 points representing the 3D coordinates of the vertices in the 

octahedron. The Φ parameter specifies the rotation angle, in degrees, about the X-axis. The Θ parameter specifies the 

rotation angle, in degrees, about the Y-axis. The Ψ parameter specifies the rotation angle, in degrees, about the Z-axis. The 

function rotateOctahedron returns a list of points, which gives the Cartensian positions of the each of the vertices in the 

octahedron after applying the rotation.
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In[85]:=
rotateOctahedron@points_,

angle : 8phi_?NumericQ, theta_?NumericQ, psi_?NumericQ<D �;

HLength@pointsD == 6L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8rmat, p0, p1, p2, p3, p4, p5, pc,

p0new, p1new, p2new, p3new, p4new, p5new, newpts<,

H* DEFINE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

p4 = points@@5DD;

p5 = points@@6DD;

pc = Hp0 + p1 + p2 + p3 + p4 + p5L � 6;

H* CREATE ROTATION MATRIX *L
rmat = RotationMatrix@psi Degree, 80, 0, 1<D.

RotationMatrix@theta Degree, 80, 1, 0<D.

RotationMatrix@phi Degree, 81, 0, 0<D;

H* CALCULATE NEW POINTS *L
p0new = pc + rmat.Hp0 - pcL;

p1new = pc + rmat.Hp1 - pcL;

p2new = pc + rmat.Hp2 - pcL;

p3new = pc + rmat.Hp3 - pcL;

p4new = pc + rmat.Hp4 - pcL;

p5new = pc + rmat.Hp5 - pcL;

newpts = 8p0new, p1new, p2new, p3new, p4new, p5new<
D

à Define drawOctahedron

We define a function in Mathematica which is able to display a octahedron given the input parameter: points. The points 

parameter is a list containing the 6 points representing the 3D coordinates of the vertices in the octahedron. The function 

drawOctahedron draws the vertices and edges which compose the octahedron and displays these in a single graphical 

object.
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In[86]:=
drawOctahedron@points_D �; HLength@pointsD == 6L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8p0, p1, p2, p3, p4, p5, pc,

v0, v1, v2, v3, v4, v5, vc,

e01, e02, e03, e12, e13, e23<,

H* CREATE POINTS *L
p0 = pointsP1T;

p1 = pointsP2T;

p2 = pointsP3T;

p3 = pointsP4T;

p4 = pointsP5T;

p5 = pointsP6T;

pc = Hp0 + p1 + p2 + p3 + p4 + p5L � 6;

H* CREATE GRAPHICS FOR VERTICES *L
v0 = Graphics3D@8RGBColor@1, 1, 0D, PointSize@0.1D, Point@p0D<D;

v1 = Graphics3D@8RGBColor@1, 0, 0D, PointSize@0.1D, Point@p1D<D;

v2 = Graphics3D@8RGBColor@0, 1, 0D, PointSize@0.1D, Point@p2D<D;

v3 = Graphics3D@8RGBColor@0, 0, 1D, PointSize@0.1D, Point@p3D<D;

v4 = Graphics3D@8RGBColor@0, 1, 1D, PointSize@0.1D, Point@p4D<D;

v5 = Graphics3D@8RGBColor@1, 0, 1D, PointSize@0.1D, Point@p5D<D;

vc = Graphics3D@8RGBColor@0, 0, 0D, PointSize@0.03D, Point@pcD<D;

H* CREATE GRAPHICS FOR EDGES *L
e01 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p0, p1<D<D;

e02 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p2<D<D;

e03 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p3<D<D;

e04 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p4<D<D;

e13 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p3<D<D;

e14 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p4<D<D;

e23 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p3<D<D;

e24 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p4<D<D;

e15 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p5<D<D;

e25 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p5<D<D;

e35 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p5<D<D;

e45 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p5<D<D;

Show@8v0, v1, v2, v3, v4, v5, vc, e01, e02, e03, e04, e13, e14,

e23, e24, e15, e25, e35, e45<, AxesLabel ® 8"x", "y", "z"<,

AspectRatio ® 1, Axes ® True, PlotRange ® All, ImageSize ® Automatic,

Boxed ® TrueD
D
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Function Test - Octahedron

Below we test the functions related to creating, rotating, and visualizing the octahedron.

à Test createOctahedron

We create a octahedron with edgelength=5 centered at (5, 5, 5).

In[87]:=
octahedronPoints = createOctahedron@5, 85, 5, 5<D

Out[87]= ::5, 5, 5 +
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à Test drawOctahedron

Below we visualize the octahedron created above.
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In[88]:=
drawOctahedron@octahedronPointsD
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à Test rotateOctahedron

Rotating the Octahedron an angle Φ counterclockwise about the X-axis (Roll)

We rotate the octahedron an angle Φ = 45° counterclockwise about the X-axis.

In[89]:=
octahedronPointsRotatedAboutX =

rotateOctahedron@octahedronPoints, 845, 0, 0<D;

The octahedron rotated an angle Φ = 45° conterclockwise about the X-axis is displayed below.
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In[90]:=
drawOctahedron@octahedronPointsRotatedAboutXD

Out[90]=
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Rotating the octahedron an angle Θ counterclockwise about the Y-axis (Pitch)

We rotate the octahedron an angle Θ = 45° counterclockwise about the Y-axis.

In[91]:=
octahedronPointsRotatedAboutY =

rotateOctahedron@octahedronPoints, 80, 45, 0<D;

The octahedron rotated an angle Θ = 45° conterclockwise about the Y-axis is displayed below.
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In[92]:=
drawOctahedron@octahedronPointsRotatedAboutYD

Out[92]=
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Rotating the octahedron an angle Ψ counterclockwise about the Z-axis (Yaw)

We rotate the octahedron an angle Ψ = 45° counterclockwise about the Z-axis.

In[93]:=
octahedronPointsRotatedAboutZ =

rotateOctahedron@octahedronPoints, 80, 0, 45<D;

The octahedron rotated an angle Ψ = 45° conterclockwise about the Z-axis is displayed below.
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In[94]:=
drawOctahedron@octahedronPointsRotatedAboutZD
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à Rotating in steps

Step 1: rotating the octahedron an angle Φ counterclockwise about the X-axis (Roll)

First we rotate the octahedron about the X-axis and stores the result.

In[95]:=
rx = rotateOctahedron@octahedronPoints, 845, 0, 0<D;

Step 2: rotating the octahedron from step 1 an angle Θ counterclockwise about the Y-axis (Pitch)

We use the result from step 1 and rotate the octahedron a second time - this time about the Y-axis

In[96]:=
ry = rotateOctahedron@rx, 80, 45, 0<D;

Step 3: rotating the octahedron from step 2 an angle Ψ counterclockwise about the Z-axis (Yaw)
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We use the result from step 2 and rotate the octahedron a third time - this time about the Z-axis

In[97]:=
rz = rotateOctahedron@ry, 80, 0, 45<D;

The result of the three consecutive rotations is shown below

In[98]:=
drawOctahedron@rzD
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Rotating the octahedron an angle Φ counterclockwise about the X-axis, then an angle Θ counterclockwise about the 
Y-axis, and finally an angle Ψ counterclockwise about the Z-axis

Instead of applying the rotations separately we can calculate the resulting rotation directly. This is shown below
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In[99]:=
drawOctahedron@rotateOctahedron@octahedronPoints, 845, 45, 45<DD
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Hexahedron
In this section we will implement a couple of functions in Mathematica, that makes it possible to rotate the Hexahedron, 

which is one of the 5 Platonic solids.

Function Definition - Hexahedron

Below functions related to creating, rotating, and visualizing the hexahedron are implemented in Mathematica.
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à Define createHexahedron

We define a function in Mathematica which creates a hexahedron (cube) based on the input parameters: edgeLength and 

center, where edgeLength specifies the length between the 8 vertices that compose the hexahedron and center specifies the 

center point of the hexahedron. The function createHexahedron returns a list of points, which gives the Cartensian posi-

tions of the each of the vertices in the hexahedron.

In[100]:=
createHexahedron@edgeLength_?NumericQ,

center : 8xCenter_?NumericQ, yCenter_?NumericQ, zCenter_?NumericQ<D :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8points, p0, p1, p2, p3, p4, p5, p6, p7<,

H* DEFINE POINTS *L
p0 = 8xCenter + 0.5 * edgeLength, yCenter - 0.5 * edgeLength,

zCenter + 0.5 * edgeLength<;

p1 = 8xCenter - 0.5 * edgeLength, yCenter - 0.5 * edgeLength,

zCenter + 0.5 * edgeLength<;

p2 = 8xCenter - 0.5 * edgeLength, yCenter + 0.5 * edgeLength,

zCenter + 0.5 * edgeLength<;

p3 = 8xCenter + 0.5 * edgeLength, yCenter + 0.5 * edgeLength,

zCenter + 0.5 * edgeLength<;

p4 = 8xCenter - 0.5 * edgeLength, yCenter + 0.5 * edgeLength,

zCenter - 0.5 * edgeLength<;

p5 = 8xCenter + 0.5 * edgeLength, yCenter + 0.5 * edgeLength,

zCenter - 0.5 * edgeLength<;

p6 = 8xCenter + 0.5 * edgeLength, yCenter - 0.5 * edgeLength,

zCenter - 0.5 * edgeLength<;

p7 = 8xCenter - 0.5 * edgeLength, yCenter - 0.5 * edgeLength,

zCenter - 0.5 * edgeLength<;

points = 8p0, p1, p2, p3, p4, p5, p6, p7<
D

à Define rotateHexahedron

We define a function in Mathematica which rotates a hexahedron about the XYZ-axes given the input parameters: points, 

Φ, Θ, and Ψ. The points parameter is a list containing the 8 points representing the 3D coordinates of the vertices in the 

hexahedron. The Φ parameter specifies the rotation angle, in degrees, about the X-axis. The Θ parameter specifies the 

rotation angle, in degrees, about the Y-axis. The Ψ parameter specifies the rotation angle, in degrees, about the Z-axis. The 

function rotateHexahedron returns a list of points, which gives the Cartensian positions of the each of the vertices in the 

hexahedron after applying the rotation.
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In[101]:=
rotateHexahedron@points_,

angle : 8phi_?NumericQ, theta_?NumericQ, psi_?NumericQ<D �;

HLength@pointsD == 8L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8rmat, p0, p1, p2, p3, p4, p5, p6, p7, p8, pc,

p0new, p1new, p2new, p3new, p4new, p5new, p6new, p7new, newpts<,

H* DEFINE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

p4 = points@@5DD;

p5 = points@@6DD;

p6 = points@@7DD;

p7 = points@@8DD;

pc = Hp0 + p1 + p2 + p3 + p4 + p5 + p6 + p7L � 8;

H* CREATE ROTATION MATRIX *L
rmat = RotationMatrix@psi Degree, 80, 0, 1<D.

RotationMatrix@theta Degree, 80, 1, 0<D.

RotationMatrix@phi Degree, 81, 0, 0<D;

H* CALCULATE NEW POINTS *L
p0new = pc + rmat.Hp0 - pcL;

p1new = pc + rmat.Hp1 - pcL;

p2new = pc + rmat.Hp2 - pcL;

p3new = pc + rmat.Hp3 - pcL;

p4new = pc + rmat.Hp4 - pcL;

p5new = pc + rmat.Hp5 - pcL;

p6new = pc + rmat.Hp6 - pcL;

p7new = pc + rmat.Hp7 - pcL;

newpts = 8p0new, p1new, p2new, p3new, p4new, p5new, p6new, p7new<
D

à Define drawHexahedron

We define a function in Mathematica which is able to display a hexahedron given the input parameter: points. The points 

parameter is a list containing the 8 points representing the 3D coordinates of the vertices in the hexahedron. The function 

drawHexahedron draws the vertices and edges which compose the hexahedron and displays these in a single graphical 

object.

In[102]:=
drawHexahedron@points_D �; HLength@pointsD == 8L :=

Module@
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In[102]:=

H* ALLOCATE LOCAL VARIABLES *L
8 p0, p1, p2, p3, p4, p5, p6, p7, pc,

v0, v1, v2, v3, v4, v5, v6, v7, vc,

e01, e03, e06, e12, e17, e23,

e24, e35, e45, e47, e56, e67<,

H* CREATE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

p4 = points@@5DD;

p5 = points@@6DD;

p6 = points@@7DD;

p7 = points@@8DD;

pc = Hp0 + p1 + p2 + p3 + p4 + p5 + p6 + p7L � 8;

H* CREATE GRAPHICS FOR VERTICES *L
v0 = Graphics3D@8RGBColor@0, 0, 0D, PointSize@0.1D, Point@p0D<D;

v1 = Graphics3D@8RGBColor@1, 0, 0D, PointSize@0.1D, Point@p1D<D;

v2 = Graphics3D@8RGBColor@0, 1, 0D, PointSize@0.1D, Point@p2D<D;

v3 = Graphics3D@8RGBColor@0, 0, 1D, PointSize@0.1D, Point@p3D<D;

v4 = Graphics3D@8RGBColor@0, 1, 1D, PointSize@0.1D, Point@p4D<D;

v5 = Graphics3D@8RGBColor@1, 0, 1D, PointSize@0.1D, Point@p5D<D;

v6 = Graphics3D@8RGBColor@1, 1, 1D, PointSize@0.1D, Point@p6D<D;

v7 = Graphics3D@8RGBColor@1, 1, 0D, PointSize@0.1D, Point@p7D<D;

vc = Graphics3D@8RGBColor@0, 0, 0D, PointSize@0.03D, Point@pcD<D;

H* CREATE GRAPHICS FOR EDGES *L
e01 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p0, p1<D<D;

e03 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p3<D<D;

e06 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p6<D<D;

e12 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p2<D<D;

e17 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p7<D<D;

e23 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p3<D<D;

e24 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p4<D<D;

e35 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p5<D<D;

e45 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p5<D<D;

e47 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p7<D<D;

e56 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p5, p6<D<D;

e67 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p6, p7<D<D;

H* SHOW COMPONENTS AND SET GRAPHICS OPTIONS *L
Show@8v0, v1, v2, v3, v4, v5, v6, v7, vc , e01, e03, e06, e12,

e17, e23, e24, e35, e45, e47, e56, e67<, AxesLabel ® 8"x", "y", "z"<,

, , , D
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In[102]:=

Axes ® True, AspectRatio ® 1, ImageSize ® Automatic, Boxed ® TrueD
D

Function Test - Hexahedron

Below we test the functions related to creating, rotating, and visualizing the hexahedron.

à Test createHexahedron

We create a hexahedron with edgelength=5 centered at (5, 5, 5).

In[103]:=
hexahedronPoints = createHexahedron@8, 85, 5, 5<D

Out[103]= 889., 1., 9.<, 81., 1., 9.<, 81., 9., 9.<, 89., 9., 9.<,
81., 9., 1.<, 89., 9., 1.<, 89., 1., 1.<, 81., 1., 1.<<

à Test drawHexahedron

Below we visualize the hexahedron created above.
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In[104]:=
drawHexahedron@hexahedronPointsD

Out[104]=
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à Test rotateHexahedron

Rotating the hexahedron an angle Φ counterclockwise about the X-axis (Roll)

We rotate the hexahedron an angle Φ = 45° counterclockwise about the X-axis.

In[105]:=
hexahedronPointsRotatedAboutX =

rotateHexahedron@hexahedronPoints, 845, 0, 0<D;

The hexahedron rotated an angle Φ = 45° conterclockwise about the X-axis is displayed below.
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In[106]:=
drawHexahedron@hexahedronPointsRotatedAboutXD
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Rotating the hexahedron an angle Θ counterclockwise about the Y-axis (Pitch)

We rotate the hexahedron an angle Θ = 45° counterclockwise about the Y-axis.

In[107]:=
hexahedronPointsRotatedAboutY =

rotateHexahedron@hexahedronPoints, 80, 45, 0<D;

The hexahedron rotated an angle Θ = 45° conterclockwise about the Y-axis is displayed below.

rotating_platonic_solids.nb 67



In[108]:=
drawHexahedron@hexahedronPointsRotatedAboutYD
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Rotating the hexahedron an angle Ψ counterclockwise about the Z-axis (Yaw)

We rotate the hexahedron an angle Ψ = 45° counterclockwise about the Z-axis.

In[109]:=
hexahedronPointsRotatedAboutZ =

rotateHexahedron@hexahedronPoints, 80, 0, 45<D;

The hexahedron rotated an angle Ψ = 45° conterclockwise about the Z-axis is displayed below.
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In[110]:=
drawHexahedron@hexahedronPointsRotatedAboutZD
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à Rotating in steps

Step 1: rotating the hexahedron an angle Φ counterclockwise about the X-axis (Roll)

First we rotate the hexahedron about the X-axis and stores the result.

In[111]:=
rx = rotateHexahedron@hexahedronPoints, 845, 0, 0<D;

Step 2: rotating the hexahedron from step 1 an angle Θ counterclockwise about the Y-axis (Pitch)

We use the result from step 1 and rotate the hexahedron a second time - this time about the Y-axis

In[112]:=
ry = rotateHexahedron@rx, 80, 45, 0<D;

Step 3: rotating the hexahedron from step 2 an angle Ψ counterclockwise about the Z-axis (Yaw)
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We use the result from step 2 and rotate the hexahedron a third time - this time about the Z-axis

In[113]:=
rz = rotateHexahedron@ry, 80, 0, 45<D;

The result of the three consecutive rotations is shown below

In[114]:=
drawHexahedron@rzD
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Rotating the hexahedron an angle Φ counterclockwise about the X-axis, then an angle Θ counterclockwise about the 
Y-axis, and finally an angle Ψ counterclockwise about the Z-axis

Instead of applying the rotations separately we can calculate the resulting rotation directly. This is shown below
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In[115]:=
drawHexahedron@rotateHexahedron@hexahedronPoints, 845, 45, 45<DD
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Icosahedron
In this section we will implement a couple of functions in Mathematica, that makes it possible to rotate the icosahedron, 

which is one of the 5 Platonic solids.

Function Definition - Icosahedron

Below functions related to creating, rotating, and visualizing the icosahedron are implemented in Mathematica.

à Define createIcosahedron

We define a function in Mathematica which creates a icosahedron based on the input parameters: edgeLength and center, 

where edgeLength specifies the length between the 12 vertices that compose the icosahedron and center specifies the 

center point of the icosahedron. The function createIcosahedron returns a list of points, which gives the Cartensian posi-

tions of the each of the vertices in the icosahedron.
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We define a function in Mathematica which creates a icosahedron based on the input parameters: edgeLength and center, 

where edgeLength specifies the length between the 12 vertices that compose the icosahedron and center specifies the 

center point of the icosahedron. The function createIcosahedron returns a list of points, which gives the Cartensian posi-

tions of the each of the vertices in the icosahedron.

In[116]:=
createIcosahedron@edgeLength_?NumericQ,

center : 8xCenter_?NumericQ, yCenter_?NumericQ, zCenter_?NumericQ<D :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8points, phi, ratio, radius, p, q,

p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11<,

H* DEFINE HELPERS *L
phi = H1 + Sqrt@5DL � 2;

ratio = Sqrt@10 + 2 * Sqrt@5DD � H4 * phiL;

radius = Sqrt@10 + 2 * Sqrt@5DD � 4 * edgeLength;

p = Hradius � ratioL � 2;

q = Hradius � ratioL � H2 * phiL;

H* DEFINE POINTS *L
p0 = 8xCenter, yCenter + q, zCenter - p<;

p1 = 8xCenter + q, yCenter + p, zCenter<;

p2 = 8xCenter - q, yCenter + p, zCenter<;

p3 = 8xCenter, yCenter + q, zCenter + p<;

p4 = 8xCenter, yCenter - q, zCenter + p<;

p5 = 8xCenter - p, yCenter, zCenter + q<;

p6 = 8xCenter, yCenter - q, zCenter - p<;

p7 = 8xCenter + p, yCenter, zCenter - q<;

p8 = 8xCenter + p, yCenter, zCenter + q<;

p9 = 8xCenter - p, yCenter, zCenter - q<;

p10 = 8xCenter + q, yCenter - p, zCenter<;

p11 = 8xCenter - q, yCenter - p, zCenter<;

points = 8p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11<
D

à Define rotateIcosahedron

We define a function in Mathematica which rotates icosahedron about the XYZ-axes given the input parameters: points, Φ, 

Θ, and Ψ. The points parameter is a list containing the 12 points representing the 3D coordinates of the vertices in the 

icosahedron. The Φ parameter specifies the rotation angle, in degrees, about the X-axis. The Θ parameter specifies the 

rotation angle, in degrees, about the Y-axis. The Ψ parameter specifies the rotation angle, in degrees, about the Z-axis. The 

function rotateIcosahedron returns a list of points, which gives the Cartensian positions of the each of the vertices in the 

icosahedron after applying the rotation.

In[117]:=
rotateIcosahedron@points_,

D �;
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In[117]:=

angle : 8phi_?NumericQ, theta_?NumericQ, psi_?NumericQ<D �;

HLength@pointsD == 12L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8rmat, p0, p1, p2, p3, p4, p5, p6,

p7, p8, p9, p10, p11, pc, p0new,

p1new, p2new, p3new, pnew4, pnew5,

pnew6, pnew7, pnew8, pnew9, pnew10,

pnew11, newpts<,

H* DEFINE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

p4 = points@@5DD;

p5 = points@@6DD;

p6 = points@@7DD;

p7 = points@@8DD;

p8 = points@@9DD;

p9 = points@@10DD;

p10 = points@@11DD;

p11 = points@@12DD;

pc = Hp0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11L � 12;

H* CREATE ROTATION MATRIX *L
rmat = RotationMatrix@psi Degree, 80, 0, 1<D.

RotationMatrix@theta Degree, 80, 1, 0<D.

RotationMatrix@phi Degree, 81, 0, 0<D;

H* CALCULATE NEW POINTS *L
p0new = pc + rmat.Hp0 - pcL;

p1new = pc + rmat.Hp1 - pcL;

p2new = pc + rmat.Hp2 - pcL;

p3new = pc + rmat.Hp3 - pcL;

p4new = pc + rmat.Hp4 - pcL;

p5new = pc + rmat.Hp5 - pcL;

p6new = pc + rmat.Hp6 - pcL;

p7new = pc + rmat.Hp7 - pcL;

p8new = pc + rmat.Hp8 - pcL;

p9new = pc + rmat.Hp9 - pcL;

p10new = pc + rmat.Hp10 - pcL;

p11new = pc + rmat.Hp11 - pcL;

newpts = 8p0new, p1new, p2new, p3new, p4new, p5new, p6new, p7new,

p8new, p9new, p10new, p11new<
D

à Define drawIcosahedron

rotating_platonic_solids.nb 73



à

Define drawIcosahedron

We define a function in Mathematica which is able to display a icosahedron given the input parameter: points. The points 

parameter is a list containing the 12 points representing the 3D coordinates of the vertices in the icosahedron. The function 

drawIcosahedron draws the vertices and edges which compose the icosahedron and displays these in a single graphical 

object.

In[118]:=
drawIcosahedron@points_D �; HLength@pointsD == 12L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, pc,

v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, vc,

e01, e02, e03, e12, e13, e23<,

H* CREATE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

p4 = points@@5DD;

p5 = points@@6DD;

p6 = points@@7DD;

p7 = points@@8DD;

p8 = points@@9DD;

p9 = points@@10DD;

p10 = points@@11DD;

p11 = points@@12DD;

pc = Hp0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11L � 12;

H* CREATE GRAPHICS FOR VERTICES *L
v0 = Graphics3D@8Red, PointSize@0.04D, Point@p0D<D;

v1 = Graphics3D@8Blue, PointSize@0.04D, Point@p1D<D;

v2 = Graphics3D@8Green, PointSize@0.04D, Point@p2D<D;

v3 = Graphics3D@8Yellow, PointSize@0.04D, Point@p3D<D;

v4 = Graphics3D@8Cyan, PointSize@0.04D, Point@p4D<D;

v5 = Graphics3D@8Magenta, PointSize@0.04D, Point@p5D<D;

v6 = Graphics3D@8Orange, PointSize@0.04D, Point@p6D<D;

v7 = Graphics3D@8Gray, PointSize@0.04D, Point@p7D<D;

v8 = Graphics3D@8Purple, PointSize@0.04D, Point@p8D<D;

v9 = Graphics3D@8Brown, PointSize@0.04D, Point@p9D<D;

v10 = Graphics3D@8Black, PointSize@0.04D, Point@p10D<D;

v11 = Graphics3D@8Pink, PointSize@0.04D, Point@p11D<D;

vc = Graphics3D@8RGBColor@0, 0, 0D, PointSize@0.015D, Point@pcD<D;

H* CREATE GRAPHICS FOR EDGES *L
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In[118]:=

e01 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p0, p1<D<D;

e02 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p2<D<D;

e06 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p6<D<D;

e07 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p7<D<D;

e09 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p9<D<D;

e12 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p2<D<D;

e13 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p3<D<D;

e17 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p7<D<D;

e18 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p8<D<D;

e23 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p3<D<D;

e25 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p5<D<D;

e29 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p9<D<D;

e34 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p4<D<D;

e35 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p5<D<D;

e38 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p8<D<D;

e45 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p5<D<D;

e48 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p8<D<D;

e410 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p4, p10<D<D;

e411 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p4, p11<D<D;

e59 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p5, p9<D<D;

e511 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p5, p11<D<D;

e67 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p6, p7<D<D;

e69 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p6, p9<D<D;

e610 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p6, p10<D<D;

e611 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p6, p11<D<D;

e78 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p7, p8<D<D;

e710 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p7, p10<D<D;

e810 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p8, p10<D<D;

e911 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p9, p11<D<D;

e1011 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p10, p11<D<D;

Show@8v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, vc, e01,

e02, e09, e06, e07, e12, e13, e17, e18, e23, e25, e29, e34,

e35, e38, e45, e48, e410, e411, e59, e511, e67, e69, e610, e611,

e78, e710, e810, e911, e1011<, AxesLabel ® 8"x", "y", "z"<,

AspectRatio ® 1, Axes ® True, PlotRange ® All, ImageSize ® Automatic,

D
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In[118]:=

Boxed ® TrueD
D

Function Test - Icosahedron

Below we test the functions related to creating, rotating, and visualizing the icosahedron.

à Test createIcosahedron

We create a icosahedron with edgelength=5 centered at (5, 5, 5).

In[119]:=
icosahedronPoints = createIcosahedron@5, 85, 5, 5<D
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à Test drawIcosahedron

Below we visualize the icosahedron created above.
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In[120]:=
drawIcosahedron@icosahedronPointsD
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à Test rotateIcosahedron

Rotating the icosahedron an angle Φ counterclockwise about the X-axis (Roll)

We rotate the icosahedron an angle Φ = 45° counterclockwise about the X-axis.

In[121]:=
icosahedronPointsRotatedAboutX =

rotateIcosahedron@icosahedronPoints, 845, 0, 0<D;

The icosahedron rotated an angle Φ = 45° conterclockwise about the X-axis is displayed below.
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In[122]:=
drawIcosahedron@icosahedronPointsRotatedAboutXD
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Rotating the icosahedron an angle Θ counterclockwise about the Y-axis (Pitch)

We rotate the icosahedron an angle Θ = 45° counterclockwise about the Y-axis.

In[123]:=
icosahedronPointsRotatedAboutY =

rotateIcosahedron@icosahedronPoints, 80, 45, 0<D;

The icosahedron rotated an angle Θ = 45° conterclockwise about the Y-axis is displayed below.
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In[124]:=
drawIcosahedron@icosahedronPointsRotatedAboutYD
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Rotating the icosahedron an angle Ψ counterclockwise about the Z-axis (Yaw)

We rotate the icosahedron an angle Ψ = 45° counterclockwise about the Z-axis.

In[125]:=
icosahedronPointsRotatedAboutZ =

rotateIcosahedron@icosahedronPoints, 80, 0, 45<D;

The icosahedron� rotated an angle Ψ = 45° conterclockwise about the Z-axis is displayed below.
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In[126]:=
drawIcosahedron@icosahedronPointsRotatedAboutZD
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à Rotating in steps

Step 1: rotating the icosahedron an angle Φ counterclockwise about the X-axis (Roll)

First we rotate the icosahedron about the X-axis and stores the result.

In[127]:=
rx = rotateIcosahedron@icosahedronPoints, 845, 0, 0<D;

Step 2: rotating the icosahedron from step 1 an angle Θ counterclockwise about the Y-axis (Pitch)

We use the result from step 1 and rotate the icosahedron a second time - this time about the Y-axis

In[128]:=
ry = rotateIcosahedron@rx, 80, 45, 0<D;

Step 3: rotating the icosahedron from step 2 an angle Ψ counterclockwise about the Z-axis (Yaw)

We use the result from step 2 and rotate the icosahedron a third time - this time about the Z-axis
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In[129]:=
rz = rotateIcosahedron@ry, 80, 0, 45<D;

The result of the three consecutive rotations is shown below

In[130]:=
drawIcosahedron@rzD
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Rotating the icosahedron an angle Φ counterclockwise about the X-axis, then an angle Θ counterclockwise about the 
Y-axis, and finally an angle Ψ counterclockwise about the Z-axis

Instead of applying the rotations separately we can calculate the resulting rotation directly. This is shown below
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In[131]:=
drawIcosahedron@rotateIcosahedron@icosahedronPoints, 845, 45, 45<DD
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Dodecahedron
In this section we will implement a couple of functions in Mathematica, that makes it possible to rotate the dodecahedron, 

which is one of the 5 Platonic solids.

Function Definition - Dodecahedron

Below functions related to creating, rotating, and visualizing the dodecahedron are implemented in Mathematica.

à Define createDodecahedron

We define a function in Mathematica which creates a dodecahedron based on the input parameters: edgeLength and center, 

where edgeLength specifies the length between the 20 vertices that compose the dodecahedron and center specifies the 

center point of the dodecahedron. The function createDodecahedron returns a list of points, which gives the Cartensian 

positions of the each of the vertices in the dodecahedron.
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We define a function in Mathematica which creates a dodecahedron based on the input parameters: edgeLength and center, 

where edgeLength specifies the length between the 20 vertices that compose the dodecahedron and center specifies the 

center point of the dodecahedron. The function createDodecahedron returns a list of points, which gives the Cartensian 

positions of the each of the vertices in the dodecahedron.

In[132]:=
createDodecahedron@edgeLength_?NumericQ,

center : 8xCenter_?NumericQ, yCenter_?NumericQ, zCenter_?NumericQ<D :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8points, phi1, phi2, phia, phib, phic,

phid, r, theta72, thetab, theta<,

H* DEFINE VARIABLES AND CONSTANTS *L
phi1 = 52.62;

phi2 = 10.81;

phia = HΠ � 180L * phi1;

phib = HΠ � 180L * phi2;

phic = -HΠ � 180L * phi2;

phid = -HΠ � 180L * phi1;

r = HHSqrt@15D + Sqrt@3DL � 4L * edgeLength;

theta72 = H72 � 180L * Π;

thetab = theta72 � 2;

theta = 0;

H* CREATE PLACEHOLDER FOR POINTS *L
points = Table@80, 0, 0<, 8i, 1, 20<D;

For@i = 1, i <= 5, i++,

points@@i, 1DD = r * Cos@thetaD * Cos@phiaD;

points@@i, 2DD = r * Sin@thetaD * Cos@phiaD;

points@@i, 3DD = r * Sin@phiaD;

theta = theta + theta72;

D;

theta = 0;

For@i = 6, i <= 10, i++,

points@@i, 1DD = r * Cos@thetaD * Cos@phibD;

points@@i, 2DD = r * Sin@thetaD * Cos@phibD;

points@@i, 3DD = r * Sin@phibD;

theta = theta + theta72;

D;

theta = thetab;

For@i = 11, i <= 15, i++,

points@@i, 1DD = r * Cos@thetaD * Cos@phicD;

points@@i, 2DD = r * Sin@thetaD * Cos@phicD;

points@@i, 3DD = r * Sin@phicD;

theta = theta + theta72;

D;
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In[132]:=

D;

theta = thetab;

For@i = 16, i <= 20, i++,

points@@i, 1DD = r * Cos@thetaD * Cos@phidD;

points@@i, 2DD = r * Sin@thetaD * Cos@phidD;

points@@i, 3DD = r * Sin@phidD;

theta = theta + theta72;

D;

Return@pointsD;

D

à Define rotateDodecahedron

We define a function in Mathematica which rotates dodecahedron about the XYZ-axes given the input parameters: points, 

Φ, Θ, and Ψ. The points parameter is a list containing the 20 points representing the 3D coordinates of the vertices in the 

dodecahedron. The Φ parameter specifies the rotation angle, in degrees, about the X-axis. The Θ parameter specifies the 

rotation angle, in degrees, about the Y-axis. The Ψ parameter specifies the rotation angle, in degrees, about the Z-axis. The 

function rotateDodecahedron returns a list of points, which gives the Cartensian positions of the each of the vertices in the 

dodecahedron after applying the rotation.

In[133]:=
rotateDodecahedron@points_,

angle : 8phi_?NumericQ, theta_?NumericQ, psi_?NumericQ<D �;

HLength@pointsD == 20L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8rmat, p0, p1, p2, p3, p4, p5, p6,

p7, p8, p9, p10, p11, p12, p13,

p14, p15, p16, p17, p18, p19, pc,

p0new, p1new, p2new, p3new, pnew4,

pnew5, pnew6, pnew7, pnew8, pnew9,

pnew10, pnew11, pnew12, pnew13,

pnew14, pnew15, pnew16, pnew17,

pnew18, pnew19, newpts<,

H* DEFINE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

p4 = points@@5DD;

p5 = points@@6DD;

p6 = points@@7DD;

p7 = points@@8DD;

p8 = points@@9DD;

p9 = points@@10DD;

p10 = points@@11DD;

;
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In[133]:=

p11 = points@@12DD;

p12 = points@@13DD;

p13 = points@@14DD;

p14 = points@@15DD;

p15 = points@@16DD;

p16 = points@@17DD;

p17 = points@@18DD;

p18 = points@@19DD;

p19 = points@@20DD;

pc =

Hp0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 +

p15 + p16 + p17 + p18 + p19L � 20;

H* CREATE ROTATION MATRIX *L
rmat = RotationMatrix@psi Degree, 80, 0, 1<D.

RotationMatrix@theta Degree, 80, 1, 0<D.

RotationMatrix@phi Degree, 81, 0, 0<D;

H* CALCULATE NEW POINTS *L
p0new = pc + rmat.Hp0 - pcL;

p1new = pc + rmat.Hp1 - pcL;

p2new = pc + rmat.Hp2 - pcL;

p3new = pc + rmat.Hp3 - pcL;

p4new = pc + rmat.Hp4 - pcL;

p5new = pc + rmat.Hp5 - pcL;

p6new = pc + rmat.Hp6 - pcL;

p7new = pc + rmat.Hp7 - pcL;

p8new = pc + rmat.Hp8 - pcL;

p9new = pc + rmat.Hp9 - pcL;

p10new = pc + rmat.Hp10 - pcL;

p11new = pc + rmat.Hp11 - pcL;

p12new = pc + rmat.Hp12 - pcL;

p13new = pc + rmat.Hp13 - pcL;

p14new = pc + rmat.Hp14 - pcL;

p15new = pc + rmat.Hp15 - pcL;

p16new = pc + rmat.Hp16 - pcL;

p17new = pc + rmat.Hp17 - pcL;

p18new = pc + rmat.Hp18 - pcL;

p19new = pc + rmat.Hp19 - pcL;

newpts = 8p0new, p1new, p2new, p3new, p4new,

p5new, p6new, p7new, p8new, p9new, p10new,

p11new, p12new, p13new, p14new, p15new,

p16new, p17new, p18new, p19new<
D

à Define drawDodecahedron
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à

Define drawDodecahedron

We define a function in Mathematica which is able to display a dodecahedron given the input parameter: points. The 

points parameter is a list containing the 20 points representing the 3D coordinates of the vertices in the dodecahedron. The 

function drawDodecahedron draws the vertices and edges which compose the dodecahedron and displays these in a single 

graphical object.

In[134]:=
drawDodecahedron@points_D �; HLength@pointsD == 20L :=

Module@
H* ALLOCATE LOCAL VARIABLES *L
8p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, pc,

v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, vc,

e01, e02, e03, e12, e13, e23<,

H* CREATE POINTS *L
p0 = points@@1DD;

p1 = points@@2DD;

p2 = points@@3DD;

p3 = points@@4DD;

p4 = points@@5DD;

p5 = points@@6DD;

p6 = points@@7DD;

p7 = points@@8DD;

p8 = points@@9DD;

p9 = points@@10DD;

p10 = points@@11DD;

p11 = points@@12DD;

p12 = points@@13DD;

p13 = points@@14DD;

p14 = points@@15DD;

p15 = points@@16DD;

p16 = points@@17DD;

p17 = points@@18DD;

p18 = points@@19DD;

p19 = points@@20DD;

pc =

Hp0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 +

p15 + p16 + p17 + p18 + p19L � 20;

H* CREATE GRAPHICS FOR VERTICES *L
v0 = Graphics3D@8Red, PointSize@0.04D, Point@p0D<D;

v1 = Graphics3D@8Blue, PointSize@0.04D, Point@p1D<D;

v2 = Graphics3D@8Green, PointSize@0.04D, Point@p2D<D;

v3 = Graphics3D@8Yellow, PointSize@0.04D, Point@p3D<D;

v4 = Graphics3D@8Cyan, PointSize@0.04D, Point@p4D<D;

;
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In[134]:=

v5 = Graphics3D@8Magenta, PointSize@0.04D, Point@p5D<D;

v6 = Graphics3D@8Orange, PointSize@0.04D, Point@p6D<D;

v7 = Graphics3D@8Gray, PointSize@0.04D, Point@p7D<D;

v8 = Graphics3D@8Purple, PointSize@0.04D, Point@p8D<D;

v9 = Graphics3D@8Brown, PointSize@0.04D, Point@p9D<D;

v10 = Graphics3D@8Black, PointSize@0.04D, Point@p10D<D;

v11 = Graphics3D@8LightRed, PointSize@0.04D, Point@p11D<D;

v12 = Graphics3D@8LightBlue, PointSize@0.04D, Point@p12D<D;

v13 = Graphics3D@8LightGreen, PointSize@0.04D, Point@p13D<D;

v14 = Graphics3D@8LightYellow, PointSize@0.04D, Point@p14D<D;

v15 = Graphics3D@8LightCyan, PointSize@0.04D, Point@p15D<D;

v16 = Graphics3D@8LightMagenta, PointSize@0.04D, Point@p16D<D;

v17 = Graphics3D@8LightOrange, PointSize@0.04D, Point@p17D<D;

v18 = Graphics3D@8LightGray, PointSize@0.04D, Point@p18D<D;

v19 = Graphics3D@8LightPurple, PointSize@0.04D, Point@p19D<D;

vc = Graphics3D@8RGBColor@0, 0, 0D, PointSize@0.015D, Point@pcD<D;

H* CREATE GRAPHICS FOR EDGES *L
H* CREATE PENTAGONS *L
e01 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p0, p1<D<D;

e12 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p2<D<D;

e23 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p3<D<D;

e34 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p4<D<D;

e40 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p0<D<D;

e01 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p1<D<D;

e16 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p6<D<D;

e610 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p6, p10<D<D;

e510 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p5, p10<D<D;

e05 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p5<D<D;

e12 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p1, p2<D<D;

e27 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p7<D<D;

e711 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p7, p11<D<D;

e116 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p11, p6<D<D;

e61 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p6, p1<D<D;

e23 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p2, p3<D<D;

e38 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p8<D<D;

e812 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p8, p12<D<D;
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In[134]:=

e127 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p12, p7<D<D;

e72 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p7, p2<D<D;

e34 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p3, p4<D<D;

e49 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p9<D<D;

e913 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p9, p13<D<D;

e138 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p13, p8<D<D;

e83 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p8, p3<D<D;

e40 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p4, p0<D<D;

e05 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p0, p5<D<D;

e514 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p5, p14<D<D;

e149 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p14, p9<D<D;

e94 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D, Line@8p9, p4<D<D;

e1516 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p15, p16<D<D;

e1611 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p16, p11<D<D;

e116 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p11, p6<D<D;

e610 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p6, p10<D<D;

e1015 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p10, p15<D<D;

e1617 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p16, p17<D<D;

e1712 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p17, p12<D<D;

e127 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p12, p7<D<D;

e711 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p7, p11<D<D;

e1116 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p11, p16<D<D;

e1718 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p17, p18<D<D;

e1813 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p18, p13<D<D;
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In[134]:=

e138 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p13, p8<D<D;

e812 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p8, p12<D<D;

e1217 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p12, p17<D<D;

e1819 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p18, p19<D<D;

e1914 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p19, p14<D<D;

e149 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p14, p9<D<D;

e913 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p9, p13<D<D;

e1318 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p13, p18<D<D;

e1516 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p15, p16<D<D;

e1617 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p16, p17<D<D;

e1718 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p17, p18<D<D;

e1819 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p18, p19<D<D;

e1915 = Graphics3D@8RGBColor@0, 0, 0D, Thickness@0.01D,

Line@8p19, p15<D<D;

Show@8v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13,

v14, v15, v16, v17, v18, v19, vc,

e01, e12, e23, e34, e40,

e01, e16, e610, e510, e05,

e12, e27, e711, e116, e61,

e23, e38, e812, e127, e72,

e34, e49, e913, e138, e83,

e40, e05, e514, e149, e94,

e1516, e1611, e116, e610, e1015,

e1617, e1712, e127, e711, e1116,

e1718, e1813, e138, e812, e1217,

e1819, e1914, e149, e913, e1318,

e1516, e1617, e1718, e1819, e1915<, AxesLabel ® 8"x", "y", "z"<,

AspectRatio ® 1, Axes ® True, PlotRange ® All, ImageSize ® Automatic,

Boxed ® TrueD
D

Function Test - Dodecahedron
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Function Test - Dodecahedron

Below we test the functions related to creating, rotating, and visualizing the dodecahedron.

à Test createDodecahedron

We create a dodecahedron with edgelength=5 centered at (5, 5, 5).

In[135]:=
dodecahedronPoints = createDodecahedron@5, 85, 5, 5<D

Out[135]= 884.25351, 0., 5.56739<, 81.31441, 4.04533, 5.56739<,
8-3.44116, 2.50015, 5.56739<, 8-3.44116, -2.50015, 5.56739<,
81.31441, -4.04533, 5.56739<, 86.88196, 0., 1.31405<,
82.12664, 6.54514, 1.31405<, 8-5.56762, 4.04512, 1.31405<,
8-5.56762, -4.04512, 1.31405<, 82.12664, -6.54514, 1.31405<,
85.56762, 4.04512, -1.31405<, 8-2.12664, 6.54514, -1.31405<,
8-6.88196, 0., -1.31405<, 8-2.12664, -6.54514, -1.31405<,
85.56762, -4.04512, -1.31405<, 83.44116, 2.50015, -5.56739<,
8-1.31441, 4.04533, -5.56739<, 8-4.25351, 0., -5.56739<,
8-1.31441, -4.04533, -5.56739<, 83.44116, -2.50015, -5.56739<<

à Test drawDodecahedron

Below we visualize the dodecahedron created above.
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In[136]:=
drawDodecahedron@dodecahedronPointsD

Out[136]=
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à Test rotateDodecahedron

Rotating the dodecahedron an angle Φ counterclockwise about the X-axis (Roll)

We rotate the dodecahedron an angle Φ = 45° counterclockwise about the X-axis.

In[137]:=
dodecahedronPointsRotatedAboutX =

rotateDodecahedron@dodecahedronPoints, 845, 0, 0<D;

The dodecahedron rotated an angle Φ = 45° conterclockwise about the X-axis is displayed below.
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In[138]:=
drawDodecahedron@dodecahedronPointsRotatedAboutXD

Out[138]=
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Rotating the dodecahedron an angle Θ counterclockwise about the Y-axis (Pitch)

We rotate the dodecahedron an angle Θ = 45° counterclockwise about the Y-axis.

In[139]:=
dodecahedronPointsRotatedAboutY =

rotateDodecahedron@dodecahedronPoints, 80, 45, 0<D;

The dodecahedron rotated an angle Θ = 45° conterclockwise about the Y-axis is displayed below.
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In[140]:=
drawDodecahedron@dodecahedronPointsRotatedAboutYD

Out[140]=
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Rotating the dodecahedron an angle Ψ counterclockwise about the Z-axis (Yaw)

We rotate the dodecahedron an angle Ψ = 45° counterclockwise about the Z-axis.

In[141]:=
dodecahedronPointsRotatedAboutZ =

rotateDodecahedron@dodecahedronPoints, 80, 0, 45<D;

The dodecahedron rotated an angle Ψ = 45° conterclockwise about the Z-axis is displayed below.
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In[142]:=
drawDodecahedron@dodecahedronPointsRotatedAboutZD

Out[142]=
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à Rotating in steps

Step 1: rotating the dodecahedron an angle Φ counterclockwise about the X-axis (Roll)

First we rotate the dodecahedron about the X-axis and stores the result.

In[143]:=
rx = rotateDodecahedron@dodecahedronPoints, 845, 0, 0<D;

Step 2: rotating the dodecahedron from step 1 an angle Θ counterclockwise about the Y-axis (Pitch)

We use the result from step 1 and rotate the dodecahedron a second time - this time about the Y-axis

In[144]:=
ry = rotateDodecahedron@rx, 80, 45, 0<D;

Step 3: rotating the dodecahedron from step 2 an angle Ψ counterclockwise about the Z-axis (Yaw)

We use the result from step 2 and rotate the dodecahedron a third time - this time about the Z-axis
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In[145]:=
rz = rotateDodecahedron@ry, 80, 0, 45<D;

The result of the three consecutive rotations is shown below

In[146]:=
drawDodecahedron@rzD

Out[146]=
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Rotating the dodecahedron an angle Φ counterclockwise about the X-axis, then an angle Θ counterclockwise about 
the Y-axis, and finally an angle Ψ counterclockwise about the Z-axis

Instead of applying the rotations separately we can calculate the resulting rotation directly. This is shown below
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In[147]:=
drawDodecahedron@rotateDodecahedron@dodecahedronPoints, 845, 45, 45<DD

Out[147]=
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Output
In[148]:=

Export@"rotating_platonic_solids.pdf", EvaluationNotebook@DD
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